论文阅读笔记——【Seq-DeepFake】Detecting and Recovering Sequential DeepFake Manipulation

本文介绍了Seq-DeepFake,一种新型的深度伪造检测任务,关注于序列面部操作的检测与恢复。SeqFakeFormer是提出的解决方案,通过空间关系提取和序列关系建模来检测和还原篡改顺序。研究创建了Seq-DeepFake数据集,包含序列面部成分和属性操作,并提供了实验验证其性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Detecting and Recovering Sequential DeepFake Manipulation

来源信息

来自:ECCV2022
在这里插入图片描述
论文链接: https://arxiv.org/pdf/2207.02204.pdf
GitHub: https://github.com/rshaojimmy/SeqDeepFake
项目主页: https://rshaojimmy.github.io/Projects/SeqDeepFake

POINTS

多步操作顺序代替单步 ——检测一系列面部操作——称为检测序列深度伪造操作(Seq-DeepFake)。
与现有的deepfake检测任务只需要二元标签(fake/real)预测不同,检测Seq-DeepFake操作需要正确预测面部操作的顺序向量。(eg:Eyeglasses-Smiling-Beard)篡改顺序序列的不同也会影响篡改的空间关系——正确检测人脸篡改序列的重要性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值