题目描述:
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
示例:
输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jump-game-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题过程:
整个过程很艰辛,我刚开始的思路是每种情况都走,但是殊不知,这是一个可以贪心的问题,学识浅薄啊…
贪心思路:
每次在可选的范围内跳的最远的就是最终步数最少的选择
例如:
上述中的例子,在刚开始时,可选位置是1或者2,则选择可以跳的更远的位置,即位置1.
上代码(代码是看了题解之后的):不得不说,大佬就是大佬呢
class Solution:
def jump(self, nums: List[int]) -> int:
#记录当前可选范围
end=0
# 记录最远的地方
maxpox=0
#步数
step=0
# 遍历数组
#不去遍历数组最后一个,为了防止,刚好到达最后一个的特殊情况。
for i in range(0,len(nums)-1):
#不断的更新最远到达的地方
maxpox=max(maxpox,nums[i]+i)
# 已到达可选范围
if(end==i):
#更新新的可选范围,更新,即选择跳跃
end=maxpox
#更新步数
step+=1
return step
这个代码很巧妙:从前到后的遍历,一方面保证了,在可到达的范围中(i小于的范围内maxpox不断更新),找一个最远到达的地方。当到达可控范围的时候,就会跳跃(步数加一,同时会产生新的可选择范围==maxpox,即选择跳跃到可以到达最远地方的这个位置)
当到达最终的位置后的step即为所求。