快手 测试开发一面

本文记录了一次在8月投递后,于8月29日收到面试邀请的测开岗位面试过程。面试涉及自我介绍、测开理解、测试方法、项目经验、兼容性测试策略、选择服务器压测或UI测试的倾向、算法题以及实习相关问题。面试官友好,面试氛围轻松,时长50分钟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.10 投递,然后经过HR初筛,后面用人部门筛选,等了很久

8.29 接到电话约9.1下午五点面试,面试时间17:00-17:52

一面:

1、面试官自我介绍

2、自己自我介绍

3、先聊点轻松的话题,问我为什么选测开?对测开有什么看法见解?你觉得测开是做什么的?

4、怎么测试一只笔

5、简历里的项目,问我的app项目怎么做的,是自己开发的吗?

并不是,只是我做的测试项目,把各个测试方面都做了

6、问我兼容性测试是什么做的?

假设给你十四个不同型号的IOS和Android手机,要你去测试,你怎么做?

你用云测做,那还不是得一个挨着一个,进行重复的大量工作?有没有更好的方法?

7、对于他们的业务主要是 快手直播的测试、以及服务器的压测,问我是更想针对那个UI页面来做测试维护,还是这种服务器端的压测?

8、写一个算法:给一个数组,里面有很多重复数字,怎么找到重复数字,并返回任意一个,贼简单的题,结果我写输入写了半天,才发现根本不需要写输入……

9、你可以先来实习吗?因为我说了暑假没有实习过

然后问我实习时间多久可以去实习?

然后给我讲了很多公司的一些福利待遇之类的。

10、反问:

(1)我先问了部门的业务以及技术栈,业务就是前面讲的快手直播和服务器压测

                然后给我说技术栈上:UI页面那儿主要是用python,服务器的压测主要是java,可以自己决定选什么语言都可以。

(2)问实习和正式工作有影响吗?是实习了才能转正吗?

                他说没有影响,问只是问能不能提前去熟悉公司业务环境,现在就是正式招聘,和实习没关系,来不来都可以,都是按照正常的流程,毕业去报道,会带着学习,试用期半年

一面总共50min,面试官真的人超好,聊天好放松!!!
感觉答得还行,整个流程也还好,就是不知道是不是刷KPI~

<think>好的,用户现在想了解快手外包一面的代码题类型或解决方案,以及相关的面试经验和真题解析。我需要结合之前的回答和提供的引用来整理一个合适的回应。 首先,用户之前的问题已经涵盖了数据流处理、Top K问题和二叉树层序遍历,这些可能是快手一面的常见题型。但用户现在提到的是“外包一面”,可能题目难度或类型有所不同,需要特别注意外包岗位的侧重点。 接下来,查看用户提供的引用内容。引用[1]提到快手四面中的三面技术问题较少,代码题可能答得不理想,但最终拿到意向书,说明基础算法和代码能力还是很重要的。引用[2]指出面试问题多涉及数据结构,如RDD、索引、栈、队列等,可能大数据相关岗位,但外包岗位可能偏向基础的数据结构和算法。引用[3]提到C++面试真题,但用户可能更关注Python或Java的解决方案。引用[4]是关于面试反馈的,强调代码实现能力的重要性。 用户现在的问题需要具体的代码题类型和解决方案,可能需要补充之前未提到的题型。结合之前的回答,可能需要增加字符串处理、链表操作、动态规划等常见题型,因为这些都是面试中的高频考点。 另外,外包岗位可能更注重实际编码能力和对基础知识的掌握,比如数组操作、字符串处理、简单算法实现等。需要确保覆盖这些方面,并给出具体的例子和代码实现。 需要注意的是,用户可能希望得到更贴近实际面试题的解析,所以应该提供真题示例,并详细说明解题思路和优化方法。同时,引用中的资料提到需要动手能力和业务场景的理解,因此在解答中可以强调代码的效率和适用场景。 最后,整理出常见的题型,如数组/字符串处理、链表操作、动态规划、栈/队列应用、二分查找等,每个部分给出问题示例、解决思路和代码实现。确保引用相关文献,如引用[2]中的数据结构问题,引用[3]中的真题解析方法,以增强回答的可信度。 总结,回答需要结构清晰,覆盖高频题型,提供代码示例,并引用相关资料支持,同时生成相关问题引导用户进一步思考。</think>### 快手外包一面代码题常见类型及解决方案 结合面试真题与岗位需求,快手外包一面代码题通常聚焦于**基础数据结构、高频算法场景和业务逻辑实现**。以下是典型题型及解析: --- #### 题型一:数组/字符串操作 **题目示例** 给定一个字符串 `s`,要求找出其中不含有重复字符的最长子串长度。 **解决方案** 使用滑动窗口(双指针)优化时间复杂度至 $O(n)$: ```python def longest_substring(s: str) -> int: char_index = {} left = max_len = 0 for right, c in enumerate(s): if c in char_index and char_index[c] >= left: left = char_index[c] + 1 char_index[c] = right max_len = max(max_len, right - left + 1) return max_len ``` **关键点** - 哈希表记录字符最后出现的位置 - 左指针跳跃式移动避免重复遍历[^1] --- #### 题型二:链表操作 **题目示例** 反转单向链表,要求空间复杂度 $O(1)$。 **解决方案** 迭代法实现指针反向: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def reverse_list(head: ListNode) -> ListNode: prev = None current = head while current: next_node = current.next current.next = prev prev = current current = next_node return prev ``` **适用场景** 链表问题常考察指针操作和边界条件处理[^2] --- #### 题型三:动态规划(中等难度) **题目示例** 求两个字符串的最长公共子序列(LCS)。 **解决方案** 构建二维 DP 表,状态转移方程: $$ dp[i][j] = \begin{cases} dp[i-1][j-1] + 1 & \text{if } s1[i-1] = s2[j-1] \\ \max(dp[i-1][j], dp[i][j-1]) & \text{otherwise} \end{cases} $$ ```python def lcs(s1: str, s2: str) -> int: m, n = len(s1), len(s2) dp = [[0]*(n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if s1[i-1] == s2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] ``` **优化方向** 空间压缩至 $O(n)$(滚动数组)[^3] --- #### 题型四:栈/队列应用 **题目示例** 设计一个支持 `push`、`pop`、`getMin` 的栈,要求所有操作时间复杂度 $O(1)$。 **解决方案** 双栈同步存储最小值: ```python class MinStack: def __init__(self): self.stack = [] self.min_stack = [] def push(self, val: int) -> None: self.stack.append(val) if not self.min_stack or val <= self.min_stack[-1]: self.min_stack.append(val) def pop(self) -> None: if self.stack.pop() == self.min_stack[-1]: self.min_stack.pop() def getMin(self) -> int: return self.min_stack[-1] ``` **业务关联** 缓存设计、事件流处理中常用类似结构[^4] --- #### 题型五:二分查找变种 **题目示例** 在旋转排序数组中搜索目标值(例如 `[4,5,6,7,0,1,2]` 中找 `0`)。 **解决方案** 分情况讨论中点与左右边界的关系: ```python def search_rotated(nums: list, target: int) -> int: left, right = 0, len(nums)-1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid # 左半部分有序 if nums[left] <= nums[mid]: if nums[left] <= target < nums[mid]: right = mid - 1 else: left = mid + 1 # 右半部分有序 else: if nums[mid] < target <= nums[right]: left = mid + 1 else: right = mid - 1 return -1 ``` **考察重点** 逻辑分治与边界条件处理能力[^2] --- ### 高频考察方向总结 1. **代码简洁性**:如链表反转需控制在 5 行内 2. **时间复杂度敏感度**:如滑动窗口替代暴力枚举 3. **业务场景映射**:如 LRU 缓存设计与哈希表结合 4. **调试能力**:面试官可能要求现场修正边界错误 --- ### 真题解析示例 **题目**:实现快速排序并分析其稳定性。 **解答**: ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr)//2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` **稳定性分析** 快速排序不稳定,因为相同元素可能因分区操作改变相对位置(例如基准选择导致交换)[^1] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值