NLP知识领域专栏
文章平均质量分 93
NLP知识领域专栏
汀、人工智能
本博客将不定期更新关于机器学习、强化学习、数据挖掘以及NLP等领域相关知识,以及分享自己学习到的知识技能,感谢大家关注!
展开
-
解锁搜索新境界!让文本语义匹配助你轻松找到你需要的一切!(快速上手baseline)
解锁搜索新境界!让文本语义匹配助你轻松找到你需要的一切!(快速上手baseline)原创 2023-09-20 10:22:52 · 360 阅读 · 0 评论 -
“超级AI助手:全新提升!中文NLP训练框架,快速上手,海量训练数据,ChatGLM-v2、中文Bloom、Dolly_v2_3b助您实现更智能的应用!”
“超级AI助手:全新提升!中文NLP训练框架,快速上手,海量训练数据,ChatGLM-v2、中文Bloom、Dolly_v2_3b助您实现更智能的应用!”原创 2023-08-25 10:27:27 · 1591 阅读 · 0 评论 -
全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!
全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!原创 2023-08-25 10:25:23 · 1812 阅读 · 1 评论 -
超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用
超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用原创 2023-08-24 14:25:14 · 1862 阅读 · 0 评论 -
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题
解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题原创 2023-08-23 17:33:03 · 1991 阅读 · 0 评论 -
精进语言模型:探索LLM Training微调与奖励模型技术的新途径
精进语言模型:探索LLM Training微调与奖励模型技术的新途径原创 2023-08-23 17:31:59 · 1133 阅读 · 0 评论 -
深入探索智能未来:文本生成与问答模型的创新融合
深入探索智能未来:文本生成与问答模型的创新融合原创 2023-08-17 11:05:57 · 304 阅读 · 0 评论 -
解锁数据潜力:信息抽取、数据增强与UIE的完美融合
解锁数据潜力:信息抽取、数据增强与UIE的完美融合原创 2023-08-17 11:02:23 · 888 阅读 · 0 评论 -
NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践
NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践原创 2023-08-14 18:00:41 · 1264 阅读 · 0 评论 -
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践原创 2023-08-14 17:56:36 · 1848 阅读 · 0 评论 -
pycorrector一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果
pycorrector一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果原创 2023-08-13 17:43:02 · 2717 阅读 · 0 评论 -
Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索
Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索原创 2023-08-12 10:09:10 · 1106 阅读 · 0 评论 -
精细解析中文公司名称:智能分词工具助力地名、品牌名、行业词和后缀提取
精细解析中文公司名称:智能分词工具助力地名、品牌名、行业词和后缀提取原创 2023-08-12 10:07:10 · 546 阅读 · 0 评论 -
书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类
书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类原创 2023-08-11 16:54:38 · 1375 阅读 · 0 评论