python 2d-gaussian fitting

该文介绍了如何利用astropy库对二维数据进行高斯拟合。首先,它导入必要的包,包括FITS文件处理和2D模型。接着,从FITS文件中读取数据,并创建一个Gaussian2D模型初始化参数。然后,选择超过3倍RMS的信号进行拟合,并使用LevMarLSQFitter进行2D拟合。最后,提取出拟合后的参数,如强度、FWHM和中心位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#目的:对一个二维的data做二维高斯拟合

#需加载的包,另外还需要numpy等

from astropy.io import fits

from astropy.modeling import Fittable2DModel, Parameter, models, fitting

from astropy.wcs import WCS

import astropy.units as u

#读入XXXX.fits

fitsname = 'XXXX.fits'

FITS_1 = fits.open(fitsname)

data = FITS_1[0].data

hdr = FITS_1[0].header

wcs = WCS(m0_fits[0].header)

#二维高斯模型&输入参数初值和限制范围:

g_init = models.Gaussian2D(amplitude=amp_start, x_mean=x_mu_start, y_mean=y_mu_start, x_stddev=x_sig_start, y_stddev=y_sig_start)

g_init.amplitude.fixed=True #固定amp值

g_init.x_mean.bounds=[x_mu_start-5,x_mu_start+5] #限制x_mu变化范围,下同

g_init.y_mean.bounds=[y_mu_start-5,y_mu_start+5]

g_init.x_stddev.bounds=[0.1,5]

g_init.y_stddev.bounds=[0.1,5]

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值