1. 引言
人脑神经网络复杂的连接方式和高效的信息处理能力,为人工智能算法的设计提供了重要灵感。研究人脑神经元的连接特点,尤其是其反馈与递归结构,不仅能帮助理解大脑如何感知与认知,还能揭示深度学习模型(如ResNet、Transformer和RNN)的设计依据和优化方向。
2. 人脑神经元连接与深度学习模型的类比
2.1 局部连接与远距离连接的启发
-
局部连接(大量):
- 在人脑中,大多数神经元倾向于与周围神经元建立密集连接,负责低级特征的高效处理。
- 启发:这种结构类似于卷积神经网络(CNN)中的卷积核,用于从局部区域提取低级特征,如边缘和纹理。
-
远距离连接(少量但关键):
- 人脑中少部分神经元通过远距离连接整合不同区域的信息,形成全局理解。
- 启发:这种连接方式对应于深度学习中的残差网络(ResNet)和Transformer模型中的全局注意力机制,通过跨层或全局连接整合信息。
2.2 信息多次交互与递归的启发
-
递归性(Recurrent Processing):
- 人脑中的信息可以多次返回到同一个神经元,