Substituting and Quoting Expressions
Description
substitute
returns the parse tree for the (unevaluated) expression expr
, substituting any variables bound in env
.
quote
simply returns its argument. The argument is not evaluated and can be any R expression.
x <- 100
substitute(x)
x
quote(x)
x
quote一直就是它括起的名称,而substitute如果参数名字有赋值,那就是赋值后的。 从下例可以看出两者处理函数的参数是不一样的。
f <- function(argX) {
list(quote(argX),
substitute(argX),
substitute(argX,list(argX=argX)),
substitute(argX,list(argX=10)),
substitute(argX,list(argX11=10)),argX)
}
suppliedArgX <- 100
f(argX = suppliedArgX)
#结果
[[1]]
argX
[[2]]
suppliedArgX
[[3]]
[1] 100
[[4]]
[1] 10
[[5]]
argX
[[6]]
[1] 100
更具体说是这样的:substitute解析每个元素进行替换,如果它不是env中的绑定符号,则保持不变。如果它是一个promise对象,即函数的形式参数或使用delayedAssign函数显式创建的,则promise的表达式替换成该符号。如果它是普通变量,则其值被替换,除非env是.GlobalEnv(全局环境),在这种情况下符号保持不变。
substitute有两种情况会发生名字的替换:一是在函数的参数中应用它时,二是当环境是非.GlobalEnv时。
#其一
expr <- quote(x + y)
print(expr) # x + y
eval(expr, list(x = 1, y = 2)) # 3
expr <- substitute(x + y, list(x = 1))
print(expr) # 1 + y
eval(expr, list(y = 2)) # 3
#其二
mye <- new.env()
assign(x = "a",value = 1,env =mye)
substitute(a,env = mye)
[1] 1
get("a",env = mye)
[1] 1
mye$a
[1] 1
quote(a)
[1] a
因为R是惰性求值,对变量名的定义不像其他语言那么清晰。如下cy1,
因为cyl没有被立刻评价,它像一个表达式对待随后被解析树解析,如果用substitue就可被解析出来。 根据quote和substitute我们可以以数据框列名为对象作为参数进行函数的编写,这种编写方式是非常符合人类正常思维的。
> dplyr::summarise(mtcars, total_cyl = sum(cyl))
total_cyl
1 198
> substitute(cyl, mtcars)
[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
> mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2