PaperNotes(18)-MultiPath、Multipath++

MultiPath++是一种高效的行为预测模型,特别适用于自动驾驶场景。该模型通过固定状态序列的anchor集合来预测多模态未来分布,每个anchor对应一个轨迹分布模态。在推理过程中,模型不仅预测anchor集合的概率分布,还对每个anchor进行waypoint偏移量的回归,使用混合高斯分布处理不确定性。相较于采样方法,MultiPath++能够显著提高预测精度并大幅减少计算成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

multipath -> multipath++

《MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction》

本文的最主要贡献是基于anchor的方法。?

[Abstract] 在motion planning任务中,human behavior预测任务至关重要且很难。在如自动驾驶的现实世界领域里,human behavior的 高度不确定和多模态 特点使得 human behavior prediction成为一个极具挑战的任务。 参考论文[1] [2] 预测单条MAP轨迹,参考论文[3] [4]则预测了未来的 准确概率分布。本文提出的Multipath, 利用固定的 状态序列anchor 集合,每条anchor都与一个轨迹分布的模态 相关。在推理时,模型预测一个关于anchor集合的分布【anchor分类任务】;对每条anchor回归关于waypoint的偏移量,考虑到不确定性,使用混合高斯分布来实现anchor点的回归任务【anchor回归任务】。本文模型十分高效,仅需要一步前向推理就能获取multi-modal future distributions,模型输出是参数化的,允许compact通信和分析概率查询。我们在几个数据集上表明本文模型实现了更准确的预测,与采样基线相比,轨迹减少了一个数量级。

MULTIPATH++: EFFICIENT INFORMATION FUSION AND TRAJECTORY AGGREGATION FOR BEHAVIOR PREDICTION

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值