序列类型动态规划——打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

1、题目分析

根据题目的提问方式,能够很明显的看出 ,该问题是最值类型的动态规划。

2、确定状态

最后一步:窃贼的最优策略中,有可能偷或者不偷最后一栋房子N-1。

因此将会分为两种情况:

情况1:不偷房子N-1:那么最优策略就是前N-1栋房子的最优策略

情况2:偷房子N-1,仍然需要知道在前N-1栋房子中最多能偷多少金币。但是需要保证不偷第N-2栋房子

因此我们可以用f[i][0]表示不偷房子i-1的前提下,前i栋房子中最多能偷多少金币

用f[i][1]表示偷房子i-1的前提下,前i栋房子中最多能偷多少金币

3、转移方程

用f[i][0]表示不偷房子i-1的前提下,前i栋房子中最多能偷多少金币

用f[i][1]表示偷房子i-1的前提下,前i栋房子中最多能偷多少金币

在这里插入图片描述

通过观察上面的式子可以发现,在不偷房子i-1的前提下,前i栋房子中最多能偷所烧金币,其实就是前i-1栋房子最多能偷多少金币,因此我们可以简化式子。

用f[i]表示窃贼在前i栋房子最多能偷多少金币
在这里插入图片描述

4、初始条件和边界情况

初始条件:

f[0]=0(没有房子,偷0枚金币)

f[1]=A[0]

f[2]=max{A [0],A[1]}

5、计算顺序

从小到大,答案是f[n],时间复杂度O(N ),空间复杂度O(1)

6、代码实现

#下面这种方法是坐标类型的方法
class Solution:
    def rob(self, nums: List[int]) -> int:
        if len(nums)==0:
            return 0
        if len(nums)==1:
            return nums[0]
        dp = [0 for i in range(len(nums))]
        dp[0]=nums[0]
        dp[1]=max(nums[0],nums[1])
        for i in range(2,len(nums)):
            dp[i] = max(dp[i-1],dp[i-2]+nums[i])
        return dp[len(nums)-1]
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值