给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。
给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。
示例:
输入:[1, 5, 2]
输出:False
解释:一开始,玩家1可以从1和2中进行选择。
如果他选择 2(或者 1 ),那么玩家 2 可以从 1(或者 2 )和 5 中进行选择。如果玩家 2 选择了 5 ,那么玩家 1 则只剩下 1(或者 2 )可选。
所以,玩家 1 的最终分数为 1 + 2 = 3,而玩家 2 为 5 。
因此,玩家 1 永远不会成为赢家,返回 False 。
1、题目分析
这道题是一道博弈题,目标就是使得自己拿到的数字之和不比对手的小呢。但是为什么不放在博弈类型的动态规划中解决,是因为这个题目有一个题眼。那就是从数组的任意一端拿去一个分数,这个描述使得题目也是一道区间类的动态规划。
假设玩家1的分数之和是A,玩家2是B,即目标是A>=B,等价于A-B>=0。
也就是说,如果玩家1和玩家2都存着自己的数字和与对手的数字和之差, 分别记为SA =A-B, SB =B-A。则玩家1的目标是最大化SA,玩家2的目标是最大化SB。
当一方玩家1面对剩下的数字,可以认为玩家1就是当前的先手,他的目标就是最大化SA =A-B
当他取走一个数字m后,玩家2变成先手,同理他也要最大化SB =B-A
对于玩家1来说,SA = -SB + m
其中,m是当前这步的数字,-SB 是对手看来的数字差取相反数(因为先手是玩家1)
现在玩家1有两种选择,取第一个数字m1 或最后一个数字m2 ,为了最大化SA , 应该选择较大的那个SA
2、确定状态
如果玩家1第一步取走a[0],玩家2面对a[1…N-1]
玩家2的最大数字差是SY
玩家1的数字差是a[0]-SY
如果玩家1第一步取走a[N-