机器学习数据挖掘常见面试题,

上月就弃坑了,谁知道又投份简历让我去面试,我是真的不想搞这些东西了,心累.

如何判断函数是凸函数?

设f是定义域为实数的函数,如果定义域内对于所有的实数x,f的二阶导大于等于0,称f是凸函数。

当x是向量时,如果其海森矩阵A是半正定的(H>=0),f也是凸函数。

如果f的二阶导大于0或者H>0,那么称f是严格凸函数。

反之,如果二阶导小于0或者x是向量时,其海森矩阵小于0,f为凹函数

LR 与 SVM 的相同和不同

相同点

1都是分类算法,都是监督学习算法(有标签),

2都是判别模型(不用计算联合概率分布的模型KNN、SVM、LR,生成模型先计算联合概率p(Y,X)然后通过贝叶斯公式转化为条件概率,朴素贝叶斯,隐马尔可夫模型)

3广为人之,且应用广泛

不同点

1支持向量机只考虑超平面附近的点--支持向量,而逻辑回归考虑所有的数据(远离的点对边界线的确定也起作用)

2损失函数不同,LR用对数损失函数,SVM用合页损失函数

3解决非线性问题,SVM引入核函数,而LR不解决非线性问题.因为LR所有点都参与决策,那么计算量太大,而SVM只有少数的支持向量参与计算

4SVM要经过数据的归一化,依赖于数据的距离测度,LR没有这个问题

随机森林和GBDT区别

1)随机森林采用的bagging思想,而GBDT采用的boosting思想。
2)组成随机森林的树可以是分类树,也可以是回归树;而GBDT只能由回归树组成。
3)组成随机森林的树可以并行生成;而GBDT只能是串行生成。
4)对于最终的输出结果而言,随机森林采用多数投票等;而GBDT则是将所有结果累加起来,或者加权累加起来。
5)随机森林对异常值不敏感;GBDT对异常值非常敏感。
6)随机森林对训练集一视同仁;GBDT是基于权值的弱分类器的集成。
7)随机森林是通过减少模型方差提高性能;GBDT是通过减少模型偏差提高性能。

方差与偏差:

偏差指的是算法的期望预测与真实值之间的偏差程度,反映了模型本身的拟合能力;Bagging每个样本上训练出来的模型取平均值,减小了偏差,并行算法有这种作用

方差度量了同等大小的训练集的变动导致学习性能的变化,刻画了数据扰动所导致的影响。Boosting是迭代算法,每一次迭代都根据上一次迭代的预测结果对样本进行加权,所以随着迭代进行,误差会越来越小,所以模型的 方差会不断减小

如何进行特征选择?

特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。

特征与目标的相关性:与目标相关性高的特征,应该优先选择。

根据特征选择的形式分为以下几种:

Filter(过滤法):按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。

Wrapper(包装法):根据目标函数(通常是预测效果),每次选择若干特征,或者排除若干特征。

Embedded(嵌入法):先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。

聚类算法中的距离度量有哪些

欧氏距离:可以简单的描述为多维空间的点点之间的几何距离

曼哈顿距离:如果欧式距离看成是多维空间对象点点的直线距离,那么曼哈顿距离就是计算从一个对象到另一个对象所经过的折线距离

参考:  LR与SVM的异同  https://www.cnblogs.com/zhizhan/p/5038747.html

         RF和GBDT区别  https://blog.csdn.net/blank_tj/article/details/82453535

         方差与偏差 https://blog.csdn.net/zrh_CSDN/article/details/80934338

        特征选择   https://blog.csdn.net/datoutong_/article/details/78813233

数据挖掘分析面试题 数据挖掘分析面试题全文共16页,当前为第1页。数据挖掘分析面试题全文共16页,当前为第1页。2011Alibaba数据分析师(实习)试题解析 数据挖掘分析面试题全文共16页,当前为第1页。 数据挖掘分析面试题全文共16页,当前为第1页。 一、异常值是指什么?请列举1种识别连续型变量异常值的方法? 异常值(Outlier) 是指样本中的个别值,其数值明显偏离所属样本的其余观测值。在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。 Grubbs' test(是以Frank E.Grubbs命名的),又叫maximumnormed residual test,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。 未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。 二、什么是聚类分析?聚类算法有哪几种?请选择一种详细描述其计算原理和步骤。 聚类分析(clusteranalysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classification analysis)或数值分类(numerical taxonomy)。聚类与分类的不同在于,聚类所要求划分的类是未知的。 聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 其流程如下: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;      (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;   (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。 优 点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<<N,t<<N 。 缺点:1. K 是事先给定的,但非常难以选定;2. 初始聚类中心的选择对聚类结果有较大的影响。 三、根据要求写出SQL 表A结构如下: Member_ID (用户的ID,字符型) Log_time (用户访问页面时间,日期型(只有一天的数据)) URL (访问的页面地址,字符型) 要求:提取出每个用户访问的第一个URL(按时间最早),形成一个新表(新表名为B,表结构和表A一致) create table B as select Member_ID,min(Log_time), URL from A group by Member_ID ; 四、销售数据分析 以下是一家B2C电子商务网站的一周销售数据,该网站主要用户群是办公室女性,销售额主数据挖掘分析面试题全文共16页,当前为第2页。数据挖掘分析面试题全文共16页,当前为第2页。要集中在5种产品上,如果你是这家公司的分析师, a) 从数据中,你看到了什么问题?你觉得背后的原因是什么? b) 如果你的老板要求你提出一个运营改进计划,你会怎么做? 表如下:一组每天某网站的销售数据 数据挖掘分析面试题全文共16页,当前为第2页。 数据挖掘分析面试题全文共16页,当前为第2页。 a) 从这一周的数据可以看出,周末的销售额明显偏低。这其中的原因,可以从两个角度来看:站在消费者的角度,周末可能不用上班,因而也没有购买该产品的欲望;站在产品的角度来看,该产品不能在周末的时候引起消费者足够的注意力。 b) 针对该问题背后的两方面原因,我的运营改进计划也分两方面:一是,针对消费者周末没有购买欲望的心理,进行引导提醒消费者周末就应该准备好该产品;二是,通过该产品的一些类似于打折促销等活动来提升该产品在周末的人气和购买力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值