机器学习、深度学习
摸金青年v
帮助值得帮助的人
展开
-
K-means聚类、KNN算法原理
1 K-means,k均值算法来实现聚类 K-means是一个将数据集分成K 个类(簇)的聚类算法,类内距离中心点最小,类间中心点距离最大。 1)先随机选取k个中心点 2)遍历所有数据,将每个数据划分到最近的中心点,然后计算每个聚类的平均值(means)作为新的中心点,重复此步骤 直到这k个中线点不再变化。 缺陷:k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响...原创 2019-02-17 19:05:26 · 993 阅读 · 0 评论 -
梯度弥散与梯度爆炸及其解决方法
梯度弥散(梯度消失): 通常神经网络所用的激活函数是sigmoid函数,sigmod函数容易引起梯度弥散。这个函数能将负无穷到正无穷的数映射到0和1之间,并且对这个函数求导的结果是f′(x)=f(x)(1−f(x))f′(x)=f(x)(1−f(x))表示两个0到1之间的数相乘,得到的结果就会变得很小了。神经网络的反向传播是逐层对函数偏导相乘,因此当神经网络层数非常深的时候,最后一层产...转载 2019-06-01 12:18:41 · 5005 阅读 · 0 评论