- 博客(10)
- 收藏
- 关注
原创 运营商客户流失率分析
目录1.数据集说明2.分析思路3.数据预处理3.数据分析及可视化3.1.总体流失率分析3.2.用户属性分析3.3.服务属性分析3.4.合同属性分析4.高流失率用户画像5.结论和建议1.数据集说明每一行代表一个客户,每一列包含列元数据中描述的客户属性。原始数据包含7043行(客户)和21列(特性)。字段字段字段说明customerID:用户ID身份标识gender性别(male,female )SeniorCitizen是否老年人(0, 1 )Part
2020-07-05 21:27:40 2291 1
原创 CDNow网站用户消费行为分析
目录1.简介1.1 数据集说明1.2 分析思路2.分析结果及建议2.1 总体消费情况(1)销量与销售额变化趋势(2)用户消费能力(3)用户消费时间2.2 客户获取和留存(1)每月新增用户(2)月复购率与回购率(3)留存时间(4)消费周期2.3 客户价值分析(1)RFM客户价值分类(2)用户价值分析2.4 客户生命周期分析(1)生命周期(2)长生命周期客户分析3.数据处理过程3.1 数据预处理3.2 数据分析及可视化1.简介1.1 数据集说明CDNow曾经是一家在线音乐零售平台,后被德国波泰尔斯曼娱乐集
2020-06-25 00:46:49 649
原创 多元线性回归练习-预测房价
目的:找到数据集中关于特征的描述。使用数据集中的其他变量来构建最佳模型以预测平均房价。数据集说明:数据集总共包含506个案例。每种情况下,数据集都有14个属性:特征说明MedianHomePrice房价中位数CRIM人均城镇犯罪率ZN25,000平方英尺以上土地的住宅用地比例INDIUS每个城镇非零售业务英亩的比例。CHAS查尔斯河虚拟变量(如果束缚河,则为1;否则为0)NOX-氧化氮浓度(百万分之一)RM每个住宅的平均房间数
2020-06-10 15:23:58 1920 2
原创 电商用户行为可视化分析
数据集说明字段字段说明提取说明user_id用户标识抽样&字段脱敏item_id商品标识抽样&字段脱敏behavior_type用户对商品的行为类型包括浏览、收藏、加购物车、购买,对应取值分别是1、2、3、4。user_geohash用户位置的空间标识,可以为空由经纬度通过保密的算法生成item_category商品分类标识字段脱敏time行为时间精确到小时级别import pandas as pdimpo
2020-06-07 23:54:43 2573
原创 网页点击率AB测试
目录简介I - 概率II - A/B 测试III - 回归简介本项目是一家电子商务网站运行 A/B 测试。分析和决定是否应该使用新的页面,保留旧的页面,或者应该将测试时间延长,之后再做出决定。I - 概率先导入数据。import pandas as pdimport numpy as npimport randomimport matplotlib.pyplot as plt%matplotlib inline#We are setting the seed to ass
2020-06-05 10:02:05 1505 1
原创 TMDB电影数据分析
探索TMDB电影数据分析目录探索TMDB电影数据分析1.简介数据基本信息:主要分析数据:分析内容:数据整理常规属性数据清理(清除多余列、丢空、去重。)探索性数据分析1、电影类型分析:各类型电影数量分布及随时间变化趋势如何?(1)获取电影类型(2)1960-2015年各类型电影数量变化(3)2005-2015年各类型电影占比变化(3)各类型电影比例分布进一步做数据清洗,将清洗后的数据放在df2数据集中:2、票房分析:票房和哪些特征有关?(1)电影票房的影响因素(数值型变量)绘制电影票房与受欢迎度,评价
2020-05-24 22:49:20 8720 2
原创 美国共享单车数据分析
导入模块:import timeimport numpy as npimport pandas as pdCITY_NAME = {'chicogo': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv'}输入筛选条件:(不能同时查看三个城市,因为不能同时打开三个文件)def filter(): city = input_mod('Plese
2020-05-21 23:00:28 2789
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人