题目
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
解题思路
仍然是hash table,但是练习一下在把原数组当作hash table的用法。
这个方法的前提:数组中的数字最大值,不超过数组的长度。也即:
1
≤
l
i
s
t
[
i
]
≤
n
l
e
n
(
l
i
s
t
)
=
=
n
1 \leq list[i] \leq n \\ len(list) == n
1≤list[i]≤nlen(list)==n
中心思想:如果当前数字list[i]出现过,则list中第i个位置对应的数字做相应改变(本题使用的改变是变为负数),用来证明list[i]出现过。当全部数字都走完一遍后,剩下没有做改变的数字,对应的位置,就是没有出现的数字
代码
class Solution:
def findDisappearedNumbers(self, nums: List[int]) -> List[int]:
for each_num in nums:
if nums[abs(each_num) - 1] > 0:
nums[abs(each_num) - 1] *= -1
result = []
for index, each_num in enumerate(nums):
if each_num > 0:
result.append(index + 1)
return result