X和Y之间有相关性,但是不一定有因果性。X和Y之间有因果性,也不一定有相关性
辛普森悖论:同一组数据,整体的趋势和分组后的趋势完全不同
实例:
看总体的话,A方案疗效好。但是考虑年龄的话,年轻患者和年老患者的疗效都是B方案好。
数学层面的解释:
存在
a
,
a
′
,
b
,
b
′
,
c
,
c
′
,
d
,
d
′
a, a', b, b', c, c', d, d'
a,a′,b,b′,c,c′,d,d′满足:
a
b
<
c
d
a
′
b
′
<
c
′
d
′
a
+
a
′
b
+
b
′
<
c
+
c
′
d
+
d
′
\begin{aligned} \frac{a}{b} &< \frac{c}{d} \\ \frac{a'}{b'} &< \frac{c'}{d'} \\ \frac{a + a'}{b + b'} &< \frac{c + c'}{d + d'} \end{aligned}
bab′a′b+b′a+a′<dc<d′c′<d+d′c+c′
背后原因:年龄同时影响了治疗方案的选择、疾病痊愈率
另外一种解释:如果考虑了年龄,那么就是考虑年龄、治疗方案2个因素对痊愈率的影响。但如果只考虑治疗方案,那么是考虑了1个因素对痊愈率的影响,合并了“年龄”这个特征的维度,所以数据结论是错误的
基本概念
pre-treatment variable:不受treatment影响的variable,比如user的人口统计学特征等
post-treatment variable:受treatment影响的variable,一些中间变量,比如吃了药后的lab test
Treatment Effect:对treatment效果做量化,有整体、实验组、subgroup、个体层次
- 整体层次:ATE/Average Treatment Effect,即:
ATE=E[Y(W=1)−Y(W=0)]
其中,Y(W=1)和Y(W=0)分别是实验组和控制组的potential outcome - 实验组层次:ATT/Average Treatment effect on the Treated group,即:
ATT=E[Y(W=1)┤|W=1] −E[Y(W=0)┤|W=1]
其中,Y(W=1) | W=1是实验组的potential outcome,Y(W=0) | W=1是实验组的反事实输出 - subgroup层次:CATE/Conditional Average Treatment Effect,即:
CATE=E[Y(W=1) ┤| X=x]−E[Y(W=0) ┤| X=x]
其中,Y(W=1) | X=x和Y(W=0) | X=x分别是group里满足X=x的subgroup的实验组、对照组potential outcome
CATE很适合treatment在不同subgroup上效果不同的应用场合 - 个体层次:ITE/Individual Treatment Effect
ITE_i=E[Y_i (W=1)]−E[Y_i (W=0)]
其中,Y_i (W=1)和Y_i (W=0)分别是个体i的实验组输出和对照组输出
基本假设
1. 强可忽略性:给定background variable X后,treatment应该随机
a. treatment不受potential outcome影响(treatment是自变量,potential outcome是因变量)
b. treatment assignment是随机的,以保证有的给1有的给0,此时才能观测到2种不同的结果(也叫positivity)
2. Stable Unit Treatment Value Assumption
a. 个体和个体之间没有相互关系(a的outcome只和a的treatment有关,和b的treatment无关)
b. 对1个unit,1个treatment只会有1种outcome,不存在某个treatment能使1个unit产生多个不同的outcome(药的不同剂量,是不同的treatment)
3. 一致性假设/common support:假设实验组和对照组的数据分布相似,否则无法预测反事实结果
General question
1. Hidden confounder的存在
2. Selection bias/covariate shift,实验组和对照组的数据分布不相同,导致反事实推理不好做(希望能猜测出实验组中对象不干预的结果、对照组中对象干预的结果),所以这个也是影响positivity的点
Confounder带来的问题
1. 可能会导致错误的结论(simpson悖论)
2. 引入了数据分布漂移的问题/selection bias/covariate shift(实验组数据分布和对照组数据分布可能不一致)
3. 反事实预测不好做了(反事实预测和实验组/对照组数据分布有关)
Selection bias的普遍解决方案
Re-weighting
核心思想:调整sample权重,使实验组和对照组数据分布相同
基于倾向性得分的re-weighting
Stratification Method
Matching method
Representation Learning Methods
Multitask Learning Methods
Meta-Learning Methods
一些常见的术语缩写
RCT:randomized controlled trials,随机对照实验
疑问
1. strong ignorability具体是什么?有实际的例子吗?
在strong ignorability下,认为原始特征能反应全部的实验组和对照组的区别,即不存在混杂因素/confounder,同时影响treatment和outcome
因果图
因果路
一系列单向箭头连成的路,如A->C->D是因果路,E<- C ->D不是
backdoor path/后门路径
如果一条无向连接X和Y的路径中,有指向X的箭头,则这条路径被称为从X到Y的后门路径。其实就是在这条路中,存在confounder同时影响treatment和outcome