leetcode-5128. 带阈值的图连通性

题目

有 n 座城市,编号从 1 到 n 。编号为 x 和 y 的两座城市直接连通的前提是: x 和 y 的公因数中,至少有一个 严格大于 某个阈值 threshold 。更正式地说,如果存在整数 z ,且满足以下所有条件,则编号 x 和 y 的城市之间有一条道路:

x % z == 0
y % z == 0
z > threshold
给你两个整数 n 和 threshold ,以及一个待查询数组,请你判断每个查询 queries[i] = [ai, bi] 指向的城市 ai 和 bi 是否连通(即,它们之间是否存在一条路径)。

返回数组 answer ,其中answer.length == queries.length 。如果第 i 个查询中指向的城市 ai 和 bi 连通,则 answer[i] 为 true ;如果不连通,则 answer[i] 为 false 。

示例 1:

在这里插入图片描述

输入:n = 6, threshold = 2, queries = [[1,4],[2,5],[3,6]]
输出:[false,false,true]
解释:每个数的因数如下:
1:   1
2:   1, 2
3:   1, 3
4:   1, 2, 4
5:   1, 5
6:   1, 2, 3, 6
所有大于阈值的的因数已经加粗标识,只有城市 3 和 6 共享公约数 3 ,因此结果是: 
[1,4]   1 与 4 不连通
[2,5]   2 与 5 不连通
[3,6]   3 与 6 连通,存在路径 3--6

示例 2:
在这里插入图片描述

输入:n = 6, threshold = 0, queries = [[4,5],[3,4],[3,2],[2,6],[1,3]]
输出:[true,true,true,true,true]
解释:每个数的因数与上一个例子相同。但是,由于阈值为 0 ,所有的因数都大于阈值。因为所有的数字共享公因数 1 ,所以所有的城市都互相连通。

示例 3:

在这里插入图片描述

输入:n = 5, threshold = 1, queries = [[4,5],[4,5],[3,2],[2,3],[3,4]]
输出:[false,false,false,false,false]
解释:只有城市 2 和 4 共享的公约数 2 严格大于阈值 1 ,所以只有这两座城市是连通的。
注意,同一对节点 [x, y] 可以有多个查询,并且查询 [x,y] 等同于查询 [y,x] 。

提示:

2 <= n <= 10^4
0 <= threshold <= n
1 <= queries.length <= 10^5
queries[i].length == 2
1 <= ai, bi <= cities
ai != bi

解题思路

一开始的时候以为是求queries中各个数的最大公因数,并且最大公因数> threshold就返回True,反之返回False,后来发现不是,因为169可以连接,是通过16 - 12 - 18 - 9连接的,所以这个思路不对。

根据示例1的提示,先求出来每个数字的因数,然后做一个因数-数字的倒排索引,然后把>threshold的因数对应的所有数,并起来,最后query其实就是看2个数是否在一个集合里。

看了其他人的思路发现,其实倒排索引这里可以省略掉,直接枚举threshold + 1n的所有数字,将该数字的倍数并起来即可。

代码

倒排索引枚举因子版:

class UnionFindSet:
    def __init__(self, n: int) -> None:
        self.parent = list(range(n + 1))
        self.height = [1] * (n + 1)
    def find(self, x: int) -> int:
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
    def union(self, x: int, y: int) -> None:
        x, y = self.find(x), self.find(y)
        if x == y:
            return
        if self.height[x] < self.height[y]:
            self.parent[x] = y
        else:
            self.parent[y] = x
            if self.height[x] == self.height[y]:
                self.height[x] += 1

class Solution:
    def areConnected(self, n: int, threshold: int, queries: List[List[int]]) -> List[bool]:
        def get_factor(n: int) -> list:
            ans = []
            for i in range(1, int(sqrt(n)) + 1):
                if n % i == 0:
                    ans += [i, n // i]
            return ans
        factor_dict = {}
        for i in range(1, n + 1):
            factors = get_factor(i)
            for each_factor in factors:
                if each_factor not in factor_dict:
                    factor_dict[each_factor] = []
                factor_dict[each_factor].append(i)
        union_find_set = UnionFindSet(n)
        for factor in factor_dict.keys():
            if factor <= threshold:
                continue
            nums = factor_dict[factor]
            for sub_num in nums[1:]:
                union_find_set.union(nums[0], sub_num)
        return [union_find_set.find(x) == union_find_set.find(y) for x, y in queries]

枚举因子版:

class UnionFindSet:
    def __init__(self, n: int) -> None:
        self.parent = [i for i in range(n + 1)]
        self.height = [1] * (n + 1)
    def find(self, x: int) -> int:
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
    def union(self, x: int, y: int) -> None:
        x, y = self.find(x), self.find(y)
        if x == y:
            return
        if self.height[x] < self.height[y]:
            self.parent[x] = y
        else:
            self.parent[y] = x
            if self.height[x] == self.height[y]:
                self.height[x] += 1

class Solution:
    def areConnected(self, n: int, threshold: int, queries: List[List[int]]) -> List[bool]:
        union_find_set = UnionFindSet(n)
        for factor in range(threshold + 1, n + 1):
            for mul in range(factor * 2, n + 1, factor):
                union_find_set.union(factor, mul)
        return [union_find_set.find(x) == union_find_set.find(y) for x, y in queries]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统,动态规划也广泛应用于各种优化算法,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列,第j个元素的值。 在LeetCode,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值