题目
You are given an integer n, the number of nodes in a directed graph where the nodes are labeled from 0 to n - 1. Each edge is red or blue in this graph, and there could be self-edges and parallel edges.
You are given two arrays redEdges and blueEdges where:
redEdges[i] = [ai, bi] indicates that there is a directed red edge from node ai to node bi in the graph, and
blueEdges[j] = [uj, vj] indicates that there is a directed blue edge from node uj to node vj in the graph.
Return an array answer of length n, where each answer[x] is the length of the shortest path from node 0 to node x such that the edge colors alternate along the path, or -1 if such a path does not exist.
Example 1:
Input: n = 3, redEdges = [[0,1],[1,2]], blueEdges = []
Output: [0,1,-1]
Example 2:
Input: n = 3, redEdges = [[0,1]], blueEdges = [[2,1]]
Output: [0,1,-1]
Constraints:
1 <= n <= 100
0 <= redEdges.length, blueEdges.length <= 400
redEdges[i].length == blueEdges[j].length == 2
0 <= ai, bi, uj, vj < n
解题思路
图的最短路径的变形题,状态里保存当前节点选择的下一条路径的颜色即可
时间复杂度是
o
(
V
+
E
)
o(V + E)
o(V+E),其中V
和E
分别是节点数和边数
空间复杂度是
o
(
V
)
o(V)
o(V)
0和1互相更换,可以使用xor
代码
class Solution:
def shortestAlternatingPaths(self, n: int, redEdges: List[List[int]], blueEdges: List[List[int]]) -> List[int]:
import collections
# build graph
red_neighbors = {}
blue_neighbors = {}
for edge_src, edge_dst in redEdges:
if edge_src not in red_neighbors:
red_neighbors[edge_src] = []
red_neighbors[edge_src].append(edge_dst)
for edge_src, edge_dst in blueEdges:
if edge_src not in blue_neighbors:
blue_neighbors[edge_src] = []
blue_neighbors[edge_src].append(edge_dst)
# bfs
res = [-1] * n
neighbor_choices = [red_neighbors, blue_neighbors]
# node_index, path_len, next_color
queue = collections.deque([(0, 0, 0), (0, 0, 1)])
visited_nodes = set()
while queue:
node, path, color = queue.popleft()
if (node, color) in visited_nodes:
continue
visited_nodes.add((node, color))
res[node] = min(path, res[node] if res[node] != -1 else path)
for neighbor in neighbor_choices[color].get(node, []):
queue.append((neighbor, path + 1, int(not(color))))
return res