leetcode - 864. Shortest Path to Get All Keys

Description

You are given an m x n grid grid where:

'.' is an empty cell.
'#' is a wall.
'@' is the starting point.
Lowercase letters represent keys.
Uppercase letters represent locks.

You start at the starting point and one move consists of walking one space in one of the four cardinal directions. You cannot walk outside the grid, or walk into a wall.

If you walk over a key, you can pick it up and you cannot walk over a lock unless you have its corresponding key.

For some 1 <= k <= 6, there is exactly one lowercase and one uppercase letter of the first k letters of the English alphabet in the grid. This means that there is exactly one key for each lock, and one lock for each key; and also that the letters used to represent the keys and locks were chosen in the same order as the English alphabet.

Return the lowest number of moves to acquire all keys. If it is impossible, return -1.

Example 1:
在这里插入图片描述

Input: grid = ["@.a..","###.#","b.A.B"]
Output: 8
Explanation: Note that the goal is to obtain all the keys not to open all the locks.

Example 2:
在这里插入图片描述

Input: grid = ["@..aA","..B#.","....b"]
Output: 6

Example 3:
在这里插入图片描述

Input: grid = ["@Aa"]
Output: -1

Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 30
grid[i][j] is either an English letter, '.', '#', or '@'.
The number of keys in the grid is in the range [1, 6].
Each key in the grid is unique.
Each key in the grid has a matching lock.

Solution

BFS, but with an additional dimension to keep track of all the keys we currently have.

Time complexity: o ( V × E × 6 ! ) = o ( m ∗ n ) o(V \times E \times 6!) = o(m*n) o(V×E×6!)=o(mn)
Space complexity: o ( V × E ) = o ( m ∗ n ) o(V \times E) = o(m*n) o(V×E)=o(mn)

Code

class Solution:
    def shortestPathAllKeys(self, grid: List[str]) -> int:
        import collections
        queue = collections.deque([])
        m, n = len(grid), len(grid[0])
        all_keys = ''
        for i in range(m):
            for j in range(n):
                if grid[i][j] == '@':
                    queue.append((i, j, '', 0))
                elif 'a' <= grid[i][j] <= 'z':
                    all_keys += grid[i][j]
        visited = set()
        while queue:
            x, y, keys, cur_len = queue.popleft()
            if (x, y, keys) in visited:
                continue
            visited.add((x, y, keys))
            if len(keys) == len(all_keys):
                return cur_len
            else:
                for new_x, new_y in zip((x, x, x + 1, x - 1), (y + 1, y - 1, y, y)):
                    if 0 <= new_x < m and 0 <= new_y < n:
                        if grid[new_x][new_y] in ('.', '@'):
                            queue.append((new_x, new_y, keys, cur_len + 1))
                        elif 'a' <= grid[new_x][new_y] <= 'z':
                            queue.append((new_x, new_y, keys + (grid[new_x][new_y] if grid[new_x][new_y] not in keys else ''), cur_len + 1))
                        elif 'A' <= grid[new_x][new_y] <= 'Z':
                            could_open = grid[new_x][new_y].lower() in keys
                            if could_open:
                                queue.append((new_x, new_y, keys, cur_len + 1))
        return -1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值