Description
We have n jobs, where every job is scheduled to be done from startTime[i] to endTime[i], obtaining a profit of profit[i].
You’re given the startTime, endTime and profit arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X you will be able to start another job that starts at time X.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
Output: 120
Explanation: The subset chosen is the first and fourth job.
Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
Output: 150
Explanation: The subset chosen is the first, fourth and fifth job.
Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
1 <= startTime[i] < endTime[i] <= 10^9
1 <= profit[i] <= 10^4
Solution
Same as 2830. Maximize the Profit as the Salesman, this one is easier to read.
Use dp[i]
to denote the maximum profit we could get by scheduling jobs[:i+1]
, then transformation equation is:
d
p
[
i
]
=
max
(
d
p
[
i
−
1
]
,
d
p
[
j
]
+
p
r
o
f
i
t
[
i
]
)
dp[i] = \max (dp[i - 1], dp[j] + profit[i])
dp[i]=max(dp[i−1],dp[j]+profit[i])
where j
is the latest job that is earlier than i
We could sort pairs by the end to use binary search, so the time complexity for searching would be
log
n
\log n
logn
Time complexity:
o
(
n
log
n
)
o(n \log n)
o(nlogn)
Space complexity:
o
(
n
)
o(n)
o(n)
Code
class Solution:
def jobScheduling(self, startTime: List[int], endTime: List[int], profit: List[int]) -> int:
def find_latest_interval(nums: list, target: int) -> int:
left, right = 0, len(nums) - 1
while left < right:
mid = (left + right + 1) >> 1
if nums[mid][0] > target:
right = mid - 1
else:
left = mid
return (left + right) >> 1
intervals = [(startTime[i], endTime[i], profit[i]) for i in range(len(profit))]
intervals.sort(key=lambda x: x[1])
# (endTime, profit)
dp = [(-1, 0)]
for i in range(len(intervals)):
st, ed, p = intervals[i]
index = find_latest_interval(dp, st)
if p + dp[index][1] > dp[-1][1]:
dp.append((ed, dp[index][1] + p))
return dp[-1][1]