leetcode - 295. Find Median from Data Stream

文章描述了一个MedianFinder类,用于在给定整数流中高效地添加元素并找到中位数。通过维护两个堆(大顶堆和小顶堆),新元素根据大小自动调整到对应堆中,保持堆的性质。时间复杂度为O(nlogn),空间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.

For example, for arr = [2,3,4], the median is 3.
For example, for arr = [2,3], the median is (2 + 3) / 2 = 2.5.
Implement the MedianFinder class:

MedianFinder() initializes the MedianFinder object.
void addNum(int num) adds the integer num from the data stream to the data structure.
double findMedian() returns the median of all elements so far. Answers within 10-5 of the actual answer will be accepted.

Example 1:

Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]

Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

Constraints:

-10^5 <= num <= 10^5
There will be at least one element in the data structure before calling findMedian.
At most 5 * 104 calls will be made to addNum and findMedian.

Follow up:

If all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?
If 99% of all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?

Solution

Solved after help.

Use 2 heaps to store all the numbers, large heap store all the large half of numbers, and small stores all the small half of numbers. large is a min-root heap, and small is a big-root heap. When we need to calculate the median, just find the top element of each heap.

To maintain their property, every time there’s a new number, push it into one heap, and then pop from the heap to another. For example, let’s say we restrain the size of small to be n//2, then when their sizes are the same, the next new element goes to large.

When adding the element, firstly add the element into small, and pop one element from small to add into large, by doing so we could make sure all the elements in large are larger than small.
Similarly, when adding an element into small, firstly add the element into large, then pop one element from large and add it to small.

Time complexity: o ( n log ⁡ n ) o(n \log n) o(nlogn) for adding, o ( 1 ) o(1) o(1) for get median.
Space complexity: o ( n ) o(n) o(n)

Code

class MedianFinder:

    def __init__(self):
        self.small = []
        self.large = []


    def addNum(self, num: int) -> None:
        if len(self.small) == len(self.large):
            heapq.heappush(self.large, -heapq.heappushpop(self.small, -num))
        else:
            heapq.heappush(self.small, -heapq.heappushpop(self.large, num))
        

    def findMedian(self) -> float:
        if len(self.small) == len(self.large):
            return (self.large[0] - self.small[0]) / 2
        else:
            return self.large[0]
        


# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值