【Python时序预测系列】基于LSTM实现单变量时间序列预测(源码)

一、引言

前文回顾:

【Python时序预测系列】基于Holt-Winters方法实现单变量时间序列预测(源码)

【Python时序预测系列】基于ARIMA法实现单变量时间序列预测(源码)

【Python时序预测系列】基于SARIMA实现单变量时间序列预测(源码)

        LSTM(Long Short-Term Memory,长短期记忆)是一种常用的循环神经网络(Recurrent Neural Network,RNN)架构,用于处理和建模时间序列数据。相比于传统的RNN,LSTM具有更强的记忆能力和长期依赖建模能力,能够有效地处理长序列和解决梯度消失/爆炸的问题。

        LSTM的核心思想是引入了称为"门"的结构,以控制信息的流动和记忆的保留。LSTM单元由一个输入门(input gate)、一个遗忘门(forget gate)和一个输出门(output gate)组成,每个门都有一个可学习的权重参数。这些门决定了输入数据的处理方式,以及过去记忆的保留和遗忘。

        在LSTM中,输入门控制新输入数据的加入,遗忘门控制过去记忆的遗忘,输出门控制输出的生成。通过这些门的调节,LSTM可以选择性地记住或忘记过去的信息,并将当前输入和过去的记忆相结合,产生新的输出。这种机制使得LSTM能够有效地处理长期依赖关系,从而在许多任务中取得了很好的效果,如语言建模、机器翻译、语音识别等。

        本文以"国际航空乘客"数据集为例,使用LSTM进行单变量单步预测。

二、实现过程

导入相关的库

import warnings
warnings.filterwarnings('ignore')
import pandas as pd
from statsmodels.tsa.holtwinters import ExponentialSmoothing
import matplotlib.pyplot as plt

2.1 读取数据集

# 读取数据集
data = pd.read_csv('international-airline-passengers.csv')
# 将日期列转换为日期时间类型
data['Month'] = pd.to_datetime(data['Month'])
# 将日期列设置为索引
data.set_index('Month', inplace=True)

data:

图片

2.2 划分数据集

# 拆分数据集为训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]

# 绘制训练集和测试集的折线图
plt.figure(figsize=(10, 6))
plt.plot(train_data, label='Training Data')
plt.plot(test_data, label='Testing Data')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Training and Testing Data')
plt.legend()
plt.show()

共144条数据,8:2划分:训练集115,测试集29。

训练集和测试集:

图片

2.3 归一化

# 将数据归一化到 0~1 范围
scaler = MinMaxScaler()
train_data_scaler = scaler.fit_transform(train_data.values.reshape(-1, 1))
test_data_scaler = scaler.transform(test_data.values.reshape(-1, 1))

2.4 构造数据集

# 定义滑动窗口函数
def create_sliding_windows(data, window_size):
    X, Y = [], []
    for i in range(len(data) - window_size):
        X.append(data[i:i+window_size])
        Y.append(data[i+window_size])
    return np.array(X), np.array(Y)

# 定义滑动窗口大小
window_size = 12

# 创建滑动窗口数据集
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
X_test, Y_test = create_sliding_windows(test_data_scaler, window_size)

# 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1))
X_test = np.reshape(X_test, (X_test.shape[0], window_size, 1)

滑动窗口12

训练集:

【1-12】【13】

【2-13】【14】

...

【102-113】【114】

【103-114】【115】

X_train:(103,12,1)

Y_train:(103,1)

经过滑动窗口构造的数据集,新的训练集数据数量(103)比原始训练集(115)少一个滑动窗口数量(12)

因此,实际训练值只有103条,是训练的13-115的部分。

测试集:

【116-127】【128】

【117-128】【129】

...

【131-142】【143】

【132-143】【144】

X_test:(17,12,1)

Y_test:(17,1)

经过滑动窗口构造的数据集,新的测试集数据数量(17)比原始训测试集(29)少一个滑动窗口数量(12)

因此,实际预测值只有17个,是预测的128-144的部分,如果想预测116-128的部分,可以取训练集的最后12个数进行预测。

2.5 建立模拟合模型进行预测

# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)

# 使用 LSTM 模型进行预测
train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)

# 反归一化预测结果
train_predictions = scaler.inverse_transform(train_predictions)
test_predictions = scaler.inverse_transform(test_predictions)

predictions:

图片

2.6 预测效果展示

# 绘制测试集预测结果的折线图
plt.figure(figsize=(10, 6))
plt.plot(test_data, label='Actual')
plt.plot(list(test_data.index)[-17:], test_predictions, label='Predicted')
plt.xlabel('Month')
plt.ylabel('Passengers')
plt.title('Actual vs Predicted')
plt.legend()
plt.show()

测试集真实值与预测值:

图片

# 绘制原始数据、训练集预测结果和测试集预测结果的折线图
plt.figure(figsize=(10, 6))
plt.plot(data, label='Actual')
plt.plot(list(train_data.index)[window_size:train_size], train_predictions, label='Training Predictions')
plt.plot(list(test_data.index)[-(len(test_data)-window_size):], test_predictions, label='Testing Predictions')
plt.xlabel('Year')
plt.ylabel('Passenger Count')
plt.title('International Airline Passengers - Actual vs Predicted')
plt.legend()
plt.show()

原始数据、训练集预测结果和测试集预测结果:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

  • 21
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
好的,下面是一个基于LSTM的多变量时间序列预测模型的Python代码示例: 首先,需要导入必要的库:numpy、pandas、tensorflow和sklearn。 ```python import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import MinMaxScaler ``` 然后,我们读取数据并进行预处理。假设我们有一个包含多个变量的时间序列,每个变量都有多个时间步长的数据集,我们需要将数据集分成训练集和测试集,并对它们进行归一化处理。这里我们使用`MinMaxScaler`对数据进行归一化。 ```python # 读取数据 data = pd.read_csv('data.csv') # 将数据分成训练集和测试集 train_data = data.iloc[:800, :] test_data = data.iloc[800:, :] # 归一化处理 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) ``` 接下来,我们需要定义模型的输入和输出。对于多变量时间序列预测模型,输入序列通常是一个多维数组,每个维度表示一个变量,而输出序列通常是一个变量数组,表示我们要预测变量。在这个例子中,我们要预测第一个变量,因此我们将输入序列定义为前9个时间步长的所有变量,输出序列定义为第10个时间步长的第一个变量。 ```python # 定义输入和输出序列 train_X, train_y = train_data[:, :-1], train_data[:, 0] test_X, test_y = test_data[:, :-1], test_data[:, 0] # 将输入序列重构为三维数组 train_X = train_X.reshape((train_X.shape[0], 9, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 9, test_X.shape[1])) ``` 然后,我们定义LSTM模型。这个模型包含一个LSTM层和一个全连接层,其中LSTM层的输出形状为`(batch_size, time_steps, hidden_size)`,我们需要将其展平为`(batch_size, time_steps*hidden_size)`,然后将其传递给全连接层进行预测。 ```python # 定义LSTM模型 model = tf.keras.Sequential([ tf.keras.layers.LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])), tf.keras.layers.Dense(1) ]) # 编译模型 model.compile(loss='mse', optimizer='adam') ``` 接下来,我们训练模型并进行预测。 ```python # 训练模型 model.fit(train_X, train_y, epochs=50, batch_size=64, validation_data=(test_X, test_y), verbose=2, shuffle=False) # 预测测试集 yhat = model.predict(test_X) # 反归一化处理 test_y = test_y.reshape((len(test_y), 1)) yhat = scaler.inverse_transform(yhat) test_y = scaler.inverse_transform(test_y) # 计算RMSE rmse = np.sqrt(np.mean((yhat - test_y)**2)) print(f'RMSE: {rmse}') ``` 完整代码如下: ```python import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import MinMaxScaler # 读取数据 data = pd.read_csv('data.csv') # 将数据分成训练集和测试集 train_data = data.iloc[:800, :] test_data = data.iloc[800:, :] # 归一化处理 scaler = MinMaxScaler() train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 定义输入和输出序列 train_X, train_y = train_data[:, :-1], train_data[:, 0] test_X, test_y = test_data[:, :-1], test_data[:, 0] # 将输入序列重构为三维数组 train_X = train_X.reshape((train_X.shape[0], 9, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 9, test_X.shape[1])) # 定义LSTM模型 model = tf.keras.Sequential([ tf.keras.layers.LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])), tf.keras.layers.Dense(1) ]) # 编译模型 model.compile(loss='mse', optimizer='adam') # 训练模型 model.fit(train_X, train_y, epochs=50, batch_size=64, validation_data=(test_X, test_y), verbose=2, shuffle=False) # 预测测试集 yhat = model.predict(test_X) # 反归一化处理 test_y = test_y.reshape((len(test_y), 1)) yhat = scaler.inverse_transform(yhat) test_y = scaler.inverse_transform(test_y) # 计算RMSE rmse = np.sqrt(np.mean((yhat - test_y)**2)) print(f'RMSE: {rmse}') ``` 注意,这里的模型只是一个简的示例,实际应用中需要根据数据集的特点来调整模型参数和架构。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值