【Python文本数据系列】使用LSTM+Attention模型进行文本情感分析(案例+源码)

这是我的第278篇原创文章。

一、引言

当使用深度学习处理文本分类任务时,遵循的流程如下:

  • 首先,准备数据,而且数据量要大,才能发挥神经网络的优势;

  • 再者,进行文本预处理,将文本数据转化成向量化数据,划分训练集、验证集和测试集;

  • 其次,依据分析目标选择合适的神经网络模型,搭建网络、进行参数设置;

  • 最后,训练模型,通过评估指标确定模型效果。

本文基于具体的实例采用LSTM+Attention模型进行文本情感分析。

二、实现过程

2.1 准备数据

读取数据:

reviews = pd.read_csv('dataset.csv')
print(reviews.head())

图片

2.2 文本预处理

将影评情感转为0和1的数值,并将影评和情感转化为numpy数组:

reviews['sentiment'] = np.where(reviews['sentiment'] == 'positive', 1, 0)
sentences = reviews['review'].to_numpy()
labels = reviews['sentiment'].to_numpy()

划分训练集和测试集:

X_train, X_test, y_train, y_test = train_test_split(sentences, labels, test_size=0.25)
print("Training Data Input Shape: ", X_train.shape)
print("Training Data Output Shape: ", y_train.shape)
print("Testing Data Input Shape: ", X_test.shape)
print("Testing Data Output Shape: ", y_test.shape)

构建分词器,构建单词索引,将字符串转化成整数索引组成的列表:

vocab_size = 10000
oov_tok = "<OOV>"
tokenizer = Tokenizer(num_words=vocab_size, oov_token=oov_tok)
tokenizer.fit_on_texts(X_train)
train_sequences = tokenizer.texts_to_sequences(X_train)

将整数列表转化为二维数值张量,相同的操作对测试集再执行一遍:

sequence_length = 200
train_padded = pad_sequences(train_sequences, maxlen=sequence_length, padding='post', truncating='post')
test_sequences = tokenizer.texts_to_sequences(X_test)
test_padded = pad_sequences(test_sequences, maxlen=sequence_length, padding='post', truncating='post')

2.3 模型搭建

使用Model类定义模型:

embedding_dim = 16
lstm_out = 32
input_ = Input(shape=[sequence_length])
layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=sequence_length)(input_)
lstm = LSTM(units=lstm_out, return_sequences=True)(layer)
layer = Dense(128, activation='relu')(lstm)
layer = Dropout(0.2)(layer)
## 注意力机制
attention = AttentionLayer(attention_size=50)(layer)
output = Dense(1, activation='sigmoid')(attention)
model = Model(inputs=input_, outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

2.4 模型训练及评估

模型自动判断迭代次数,防止过拟合,然后开始模型训练和测试:

checkpoint_filepath = os.getcwd()
model_checkpoint_callback = ModelCheckpoint(filepath=checkpoint_filepath, save_weights_only=False, monitor='val_loss', mode='min', save_best_only=True)
callbacks = [EarlyStopping(patience=2), model_checkpoint_callback]
history = model.fit(train_padded, y_train, epochs=10, validation_data=(test_padded, y_test), callbacks=callbacks)

metrics_df = pd.DataFrame(history.history)
print(metrics_df)

图片

打印模型结果,可以看到我们定义的是迭代10次,实际上3次之后就过拟合了。所以,在没有进行网络参数调优的情况下,获得了87%的准确率,深度学习的能力确实是非常惊艳。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据杂坛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值