首度支持多GPU扩展!成本骤降33%!英伟达B30芯片破解算力限制

据报道,英伟达正在为中国市场研发一款名为“B30”的降规版AI芯片,这款芯片将首度支持多GPU扩展,允许用户通过连接多组芯片来打造更高性能的计算集群。

B30芯片预计将采用最新的Blackwell架构,使用GDDR7显存,而非高频宽内存(HBM),也不会采用台积电的先进封装技术。

图片

英伟达B30快速集群搭建

B30单卡性能虽不及H20,却能通过堆叠数量实现集群算力提升。

据了解字节跳动、腾讯等互联网巨头已释放测试意向。在训练千亿参数模型的场景中,100块B30组成的集群理论性能可达H20集群的85%,但采购成本仅需60%。但对于需要单卡高带宽的垂直领域模型训练,B30的显存带宽却缩水至H20的45%。

英伟达B30价格卡位战术

B30售价预计在6500美元至8000美元之间,低于1万至1.2万美元的H20芯片,又高于部分国产芯片,适合预算有限但需要中等算力的企业。

英伟达B30应用场景细分

适用场景:分布式训练千亿参数模型(如互联网大厂的通用模型训练)、对单卡带宽要求不高的推理任务(如文本生成、客服机器人)。

B30芯片作为降规版,单芯片算力可能低于H20,但通过多GPU扩展可提升整体性能,适合对成本敏感但需要一定扩展性的应用场景。

图片

此次B30芯片正是英伟达为中国市场定制的降规版 AI 芯片,虽然舍弃高端 HBM 显存,导致单卡显存带宽缩水。但是支持多 GPU 集群部署,且深度兼容 CUDA-X 软件栈,可无缝迁移主流深度学习框架(如 PyTorch、TensorFlow),降低企业技术适配成本。

企业定制化算力服务

对于有算力需求的中小企业来说,直接采购一套高性能的算力服务器,并持续维护和升级成本高昂,反而限制了企业在算力领域的投入。

为帮助企业突破传统算力在成本、效率、灵活性和适用性等方面的瓶颈,加速以智能化场景为核心的业务融合进程。万云智算在国内布局五大自运营算力中心,从算效提升、标准化管理、一体化服务等方面构建丰富、高效、易用、性价高的企业级定制算力服务。

万云智算覆盖主流算力A30、A800、H20、H800、4090等,为用户提供高性价比、自主可控、即开即用的GPU算力资源服务与定制化大模型服务。

点击获取企业定制化行业解决方案

NO.1

构建全域算力网

万云智算通过API直连东数西算节点、京津冀、长三角等10大核心区域,超50个机房,将分散的CPU、GPU、存储等资源整合为“算力资源池”,并通过智能调度引擎实现毫秒级匹配。

NO.2

建立标准化AI交付

通过为 AI 模型提供全面的数据支持,搭配低代码工具、自动化组件,最终让AI交付变为 “可快速复用的工具”,推动千行百业智能化转型。

NO.3

算力与AI深度融合

万云智算通过“算力资源+AI平台+场景化工具” 的一体化方案,将算力基础与AI开发服务一体化,实现“资源即服务”。

NO.4

行业定制解决方案

利用领域专家经验与企业历史数据,构建企业知识库。并根据特定业务场景和需求进行大模型训练和优化,精准解决企业实际问题,实现业务模式创新。

万云智算致力于提供高效、稳定、安全的企业定制化算力服务,助力企业快速驶入AI时代。无论是尝试AI转型的传统企业,还是需要大规模私有化部署的领军企业,万云智算都将提供行业解决方案,帮助企业实现智能化转型升级。

### NVIDIA 计GPU 型号列表 NVIDIA 提供了一系列专为高性能计设计的 GPU,这些设备广泛应用于科学计、机器学习、数据分析等领域。以下是部分主流的计GPU 型号: #### Tesla 系列 Tesla 是 NVIDIA 早期推出的专注于加速计的产品线。 - **K80**: 双 GK210 芯片, 支持 CUDA Compute Capability 3.7[^2] - **P100**: 单颗 Pascal 架构 GP100 芯片, 支持 NVLink 技术, CUDA Compute Capability 6.0 #### Quadro 系列 Quadro 主要面向专业图形处理领域,但也具备强大的计性能。 - **RTX A6000**: GA102 Ampere 架构核心, CUDA Cores 数量达到 10752 个, Tensor Core 达到 336 个 - **GV100 (Volta)**: GV100 Volta 架构核心, 配备 5120 个 CUDA 核心以及 640 个 Tensor Core #### DGX 系列 DGX 系列为深度学习优化的一体机解决方案,内置张顶级计卡。 - **DGX A100**: 搭载八块 A100 PCIe 显卡, 总计拥有 40GB 或者 80GB HBM2E 显存容量选项, CUDA Cores 和 Tensor Cores 的数量非常可观 #### 数据中心级产品 针对大规模数据中心部署而设计的专业级别显卡。 - **A100**: 安培架构旗舰款, 支持第三代 TensorCore 技术, FP32 吞吐量高达 19.5 TFLOPS - **V100S**: Volta 架构升级版 V100, 在原有基础上进一步提升了单精度浮点运和内存带宽 对于希望从事科学研究或企业级应用开发的人来说,上述列举出来的几类 GPU 将会是非常不错的选择。每一代新产品都会带来更高效的并行处理能与更低能耗表现。 ```python # Python 示例代码展示如何获取当前系统中的 NVIDIA GPU 设备信息 import nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) print(f'GPU Memory Usage:') print(f'Total : {info.total}') print(f'Free : {info.free}') print(f'Used : {info.used}') nvidia_smi.nvmlShutdown() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值