SKlearn数据集划分,数据集接口,分类数据集和回归数据集分别下两个看看

本文介绍了如何使用SKlearn进行数据集划分,包括训练集和测试集的划分,并详细讲解了数据集接口,如分类数据集和回归数据集。以鸢尾花和波士顿房价数据集为例,展示了数据的加载和主要属性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SKlearn数据集

1.数据集的划分

(1) 训练集和测试集

如果拿到数据全都用来训练一个模型?
所以就需要把数据集划分为训练集测试集
划分比例:

训练集(建立模型) 测试集 (评估模型是否有效)
70% 30%
80% 20%
75% 25%

(2)对数据集进行分割

sk.model_selection.train_test_split( *arrays, **options)
#x数据集的特征值
#y数据集的标签值
#testsize 测试集的大小,一般为float
#random_state 随机数的种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
#return训练集特征值,测试集特征值,训练标签,测试标签(默认随机取)

代码实现:

from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split

li = load_iris()



# 注意返回值, 训练集 train  x_train, y_train        测试集  test   x_test, y_test   x和y分别表示特征值和目标值
x_train, x_test, y_train
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值