背包问题求方案数

本文探讨了一种经典的背包问题,即在给定的物品集合中选择物品装入背包,使得总价值最大且总体积不超过背包容量。通过动态规划算法,不仅求解了最大价值,还计算了达到该最大价值的不同方案的数量,并强调了在计算过程中使用大质数模运算的重要性。
摘要由CSDN通过智能技术生成

题目:

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 最优选法的方案数。注意答案可能很大,请输出答案模 1e9+7的结果。

输入格式

第一行两个整数,N,V用空格隔开,分别表示物品数量和背包容积。

接下来有 N行,每行两个整数 vi,wi用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示 方案数 模 1e9+7的结果。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 6

输出样例:

2

多一个数组cnt记录最大价值的方案数

为什么很多题目都要模1e9+7:模一个大数和模一个质数可以减少冲突。

比如说如果所有的结果都是偶数…你模6就只可能出现0, 2, 4这三种情况…但模5还是可以出现2, 4, 1, 3这四(4=5-1)种情况的…
hash表如果是用取模的方法也要模一个大质数来减少冲突,出题人也会这样来 希望减少你“蒙对“的概率。

而模1e9+7又有一个很好的特点,就是相加不爆int,相乘不爆long long。

import java.util.*;
class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();
        int V = sc.nextInt();
        int[] volume = new int[N];
        int[] value = new int[N];
        for(int i = 0; i < N; i++){
            volume[i] = sc.nextInt();
            value[i] = sc.nextInt();
        }
        int[] dp = new int[V+1];
        int[] cnt = new int[V+1];
        Arrays.fill(cnt,1);
        int mod = (int)1e9+7;
        for(int i = 0; i < N; i++){
            for(int j = V; j >= volume[i]; j--){
                if(dp[j-volume[i]]+value[i] > dp[j]){
                    dp[j] = dp[j-volume[i]]+value[i];
                    cnt[j] = cnt[j-volume[i]]%mod;
                }
                else if(dp[j-volume[i]]+value[i]==dp[j]){
                    cnt[j] = (cnt[j]+cnt[j-volume[i]])%mod;
                }
            }
        }
       System.out.print(cnt[V]) ;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值