c++背包九讲之背包问题求方案数

一、背包九讲总述

关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题

1、01背包问题
2、完全背包问题
3、多重背包问题
4、混合背包问题
5、二维费用的背包问题
6、分组背包问题
7、背包问题求方案数
8、求背包问题的方案
9、有依赖的背包问题
往前6篇博文已经介绍了前6个问题,有需要的同学可以看一下!!

二、背包问题求方案数
背包问题求方案数:设背包容量为C,一共N件物品,每件物品重量为w[i],每件物品的价值为v[i],求将背包装满的方案总数。

故:对于01背包问题、完全背包问题和多重背包问题的方法都完全可以使用

接下来,01背包问题为例进行解答:

设背包容量为C,一共N件物品,且只可以取一次,每件物品重量为w[i],每件物品的价值为v[i],求将背包装满的方案总数。

类似求最大价值,我们也将问题抽象化:
1) 子问题定义:F[i][j]表示前i件物品中选取若干件物品放入剩余空间为j的背包中刚好把背包装满的方案总数。
2) 根据第i件物品体积和所剩背包容量大小进行决策
在这里插入图片描述
注意初始化条件为F[0][0]=1,即没有物品放入容量为0的背包刚好放满的方案数为1。

F[i-1][j]表示背包中不含第i种物品时把背包装满的方案,F[i-1][j-C[i]]表示包含第i种物品把背包装满的方案总数。所以,当j<C[i]时F[i][j] = F[i-1][j];当j >= C[i]时, F[i][j] = F[i-1][j-C[i]] + F[i-1][j],为什么是两者的和,因为F[i-1][j-C[i]]和F[i-1][j]都是[i][j]状态时把背包装满的方案,且两者互斥。
题目描述:
有 N 件物品和一个容量是 C 的背包。每件物品只能使用一次。
第 i 件物品的体积是 w[i],价值是 v[i]。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出 最优选法的方案数。注意答案可能很大,请输出答案模 pow(10,9)+7 的结果。

输入格式
第一行两个整数,N,C,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 w[i],v[i],用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示 方案数 模 pow(10,9)+7 的结果。

#include<iostream>
#include<algorithm>

using namespace std;

const int mod = 1e9 + 7;

int v[100] = { 0 };//价值
int w[100] = { 0 };//重量
int f[100] = { 0 };

int main()
{
	int N, C;
	int n[100] = { 0 };
	cout << "请输入物品数量和背包容量:" << endl;
	cin >> N >> C;
	for (int i = 1; i <= N; i++)
	{
		
		cout << "请输入第" << i <<"个物体的重量和价值:" << endl;
		cin >> w[i] >> v[i];
		
	}
	f[0] = 1;//初始方案:没有物品放入容量为0的背包刚好放满的方案数为1
	for (int i = 1; i <= N; i++)
	{
		for (int j = C; j >= w[i]; --j)
		{
			f[j] += f[j - w[i]];
		}
	}
	cout <<"方案总数为:"<< f[C]%mod << endl;

	system("pause");
	return 0;
}

在这里插入图片描述

对于完全背包问题可以类推:
状态方程如下:
在这里插入图片描述
F[i-1][j]表示背包中不含第i种物品时把背包装满的方案,F[i][j-C[i]]表示至少包含一件第i种物品把背包装满的方案总数。所以,当j<C[i]时F[i][j] = F[i-1][j];当j >= C[i]时, F[i][j] = F[i][j-C[i]] + F[i-1][j],为什么是两者的和,因为F[i][j-C[i]]和F[i-1][j]都是[i][j]状态时把背包装满的方案,且两者互斥。

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
以下是一个使用动态规划解决背包问题第k大价值的C++代码示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int knapsack(int k, vector<int>& weights, vector<int>& values, int capacity) { int n = weights.size(); vector<vector<int>> dp(n + 1, vector<int>(capacity + 1, 0)); for (int i = 1; i <= n; i++) { for (int j = 1; j <= capacity; j++) { if (weights[i - 1] <= j) { dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]); } else { dp[i][j] = dp[i - 1][j]; } } } vector<int> valuesList; for (int i = 1; i <= n; i++) { valuesList.push_back(dp[i][capacity]); } sort(valuesList.rbegin(), valuesList.rend()); return valuesList[k - 1]; } int main() { vector<int> weights = {2, 3, 5}; vector<int> values = {10, 20, 30}; int capacity = 8; int k = 2; int result = knapsack(k, weights, values, capacity); cout << "The " << k << "th largest value is: " << result << endl; return 0; } ``` 这段代码中,我们使用二维组 `dp` 来记录每个子问题的最大价值。然后,我们将每个物品的最大价值放入一个列表中,并对该列表进行降序排序。最后,返回第 `k` 个最大值。 在这个例子中,我们有三个物品,其重量分别为 2、3 和 5,价值分别为 10、20 和 30。背包的容量是 8,我们要第 2 个最大价值。运行代码后,输出将会是: ``` The 2th largest value is: 30 ``` 这表示背包问题中第 2 大的价值是 30。你可以根据自己的需修改物品的重量、价值、背包容量和要的第 `k` 个最大价值。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值