1、概念
Paxos算法是一种基于消息传递的分布式一致性算法,旨在解决分布式系统中如何就某个值(决议)达成一致的问题。 Paxos算法由Lamport提出,因其高度容错特性而被广泛认为是最有效的分布式一致性算法之一。Google的Chubby、Megastore以及Spanner等系统都采用了Paxos算法来解决分布式一致性问题。
2、角色
Paxos算法的核心在于其角色划分和协议阶段。算法中的节点被分为三种角色:
提议者(Proposer)、接受者(Acceptor)和学习者(Learner)。
提议者提出提案,希望得到其他节点的认可;
接受者对提案进行投票,决定是否接受提案;
学习者了解最终达成共识的提案结果。
3、阶段
Paxos协议主要分为两个阶段:准备阶段(Prepare Phase)和接受阶段(Accept Phase)。
1)准备阶段:
提议者生成一个唯一的提案编号,并向所有接受者发送准备请求。
接受者收到请求后,如果该提案编号大于其之前见过的所有提案编号,则回应一个承诺,不再接受编号小于该提案编号的任何提案。
2)接受阶段
提议者在收到多数接受者的回应后,选择一个提案并发送接受请求给所有接受者。
接受者在收到接受请求后,如果该提案编号不小于其已承诺的提案编号,则接受该提案并记录下来,并向提议者发送接受确认。
达成一致
当提议者收到多数接受者的接受确认后,即表示提案被多数节点接受,系统达成一致。
结语:
Paxos算法的特点在于其高度的容错机制。它利用大多数(Majority)机制保证了2F+1的容错能力,即2F+1个节点的系统最多允许F个节点同时出现故障。这种机制确保了即使在部分节点故障或网络分区的情况下,系统仍然能够保持一致性