大数据并发处理 hadoop solr

本文介绍了处理大并发大数据量请求的方法,包括服务器层面的配置优化,如调整IIS队列长度、并发请求限制等,以及数据库层面的并发控制策略,如保守式并发、开放式并发和最后的更新生效。同时,针对不同并发情况提供了具体的解决方案,如索引优化、缓存使用和数据分区。
摘要由CSDN通过智能技术生成

大并发大数据量请求的处理方法

大并发大数据量请求一般会分为几种情况:

1.大量的用户同时对系统的不同功能页面进行查找,更新操作

2.大量的用户同时对系统的同一个页面,同一个表的大数据量进行查询操作

3.大量的用户同时对系统的同一个页面,同一个表进行更新操作

 

对于第一种情况一般处理方法如下:

一。对服务器层面的处理

1. 调整IIS 7应用程序池队列长度

由原来的默认1000改为65535。

IIS Manager > ApplicationPools > Advanced Settings

Queue Length : 65535

2.  调整IIS 7的appConcurrentRequestLimit设置

由原来的默认5000改为100000。

c:\windows\system32\inetsrv\appcmd.exe set config /section:serverRuntime /appConcurrentRequestLimit:100000

在%systemroot%\System32\inetsrv\config\applicationHost.config中可以查看到该设置:

[html]  view plain copy
  1. <serverRuntime appConcurrentRequestLimit="100000" />   
[html] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值