一、CNN卷积神经网络可以干的事情:
检测任务
分类和检索:
超分辨率重构:
字体识别、人脸识别、医学任务、自动驾驶任务等
总结:特征提取相关
二、卷积神经网络的整体架构:
(1)输入层
H*W*C的三维数据
(2)卷积层(提取特征)
权重参数矩阵 filterW
当前区域数据 :将输入数据划分成小区域,对每个区域进行特征提取
滑动窗口步长:
卷积核尺寸:
H*W,一般是3*3
边缘填充:
边缘的点被提取次数少,所以给边界padding一圈之后,让边缘点提取次数增多,一定程度上弥补了边界特征缺失的问题。一般都padding0,让增加值对结果不产生影响。
偏置项
在权重矩阵和区域计算内积之后,加上偏置项才是最后的特征图数据