CNN卷积神经网络学习笔记(特征提取)

本文介绍了CNN卷积神经网络的主要应用,如图像检测、分类和超分辨率重构等。详细阐述了CNN的架构,包括输入层、卷积层、ReLU激活函数、池化层和全连接层的功能。特别讨论了ReLU的优点以及VGG-16和Resnet等经典模型。此外,还提到了PyTorch的安装和配置流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、CNN卷积神经网络可以干的事情:

检测任务

分类和检索:

 

 超分辨率重构:

字体识别、人脸识别、医学任务、自动驾驶任务等

总结:特征提取相关 

二、卷积神经网络的整体架构:

(1)输入层

H*W*C的三维数据

(2)卷积层(提取特征)

权重参数矩阵 filterW

当前区域数据 :将输入数据划分成小区域,对每个区域进行特征提取

滑动窗口步长:

卷积核尺寸:

H*W,一般是3*3

边缘填充:

边缘的点被提取次数少,所以给边界padding一圈之后,让边缘点提取次数增多,一定程度上弥补了边界特征缺失的问题。一般都padding0,让增加值对结果不产生影响。 

偏置项

在权重矩阵和区域计算内积之后,加上偏置项才是最后的特征图数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值