迪卡侬整合传播方案拆解

今天道叔分享的这份咱们方案库里的《迪卡侬秋季系列产品社媒整合传播方案》真的是一份教科书级别的策划案例,咱们一起来看看里面有哪些值得学习和借鉴的地方。

首先,明确目标和背景,这是策划的起点。

迪卡侬这次的目标很清晰:推新品、固品牌、沉资产。

他们围绕秋季运动系列,从消费者角度解读产品卖点,通过场景化种草,展示专业性,培养用户心智。

这种策略很实用,特别是对我们这种经常要推新品的品牌来说,要让消费者看到产品的实际好处,而不是自说自话。

接着,他们锁定了核心人群——Z世代资深中产新锐白领

这三大人群是消费主力军,也是社交媒体上的活跃分子。

所以,策划时一定得搞清楚你的目标用户是谁,这样才能精准投放。

在平台策略上,迪卡侬基于消费者触媒习惯和内容偏好,锁定了小红书和抖音这两个平台。

这两个平台都是年轻人爱逛的,特别适合做种草和宣传。

咱们在策划时,也得根据目标用户的喜好,选择合适的平台。

然后,是营销策略,迪卡侬采用了KFS营销布局,贯通品牌闭环营销链路。

简单来说,就是达人策略(K)、内容策略(F)、投放实施(S)三管齐下。

在达人策略上,他们以目标人群为锚点,选择了多类型达人构建流量基本盘。

这种方法很有效,不同类型的达人能覆盖到不同的人群,形成合力。

内容策略上,迪卡侬构建了内容模型,用爆款内容组合来吸引用户。

比如,小红书上侧重旅行穿搭类图文种草,展示产品专业性能;抖音上则侧重“在路上”的旅行vlog视频创意。

这些内容既符合平台特性,又能吸引用户眼球。

投放实施上,迪卡侬在小红书和抖音上分别采取了不同的策略。

小红书上多选出行类达人进行旅行记录+攻略种草;抖音上则通过信息流和搜索投放,实现广覆盖和深种草。

这种多平台、多渠道的投放策略,能最大限度地提升品牌曝光度和用户参与度。

投流方面,迪卡侬用优质内容匹配五种投放定向策略,还通过信息流回搜和互动率数据双重把控,反哺内容优化,放大种草效率。

这种精细化运营的方法,值得我们学习。

最后,搜索策略上,迪卡侬采用SEM攻守兼备的策略,通过差异化沟通占领各决策阶段用户心智。

这种方法能在用户搜索时,第一时间出现在他们眼前,增加转化机会。

效果反馈方面,迪卡侬这次社媒整合传播方案取得了显著成效。

不仅短时提高了产品站内声量,助力种草人群转化;而且信息流+搜索投放效果均优于同行业及预期KPI;

搜索结果成效显著,高效影响用户心智;还广受粉丝好评,激发了粉丝兴趣。

总的来说,这份方案真的很值得咱们学习和借鉴。

它让我们看到,一个成功的社媒整合传播方案,需要明确的目标、精准的人群定位、合适的平台选择、有效的营销策略以及精细化的运营。

希望咱们在以后的策划中,也能做出这么优秀的方案!

更多策划大案,可以查看我们的方案库哦。

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的微控制器,广泛应用于工业控制、物联网设备等领域。本资料包主要提供了STM32F103在实现RS485通信及Modbus RTU协议的主机和从机模式下的源代码实例,帮助开发者快速理解和应用这一通讯技术。 RS485是一种物理层通信标准,用于构建多点数据通信网络,具有传输距离远、抗干扰能力强的特点。它采用差分信号传输方式,可以实现双向通信,适合于长距离的工业环境。在RS485网络中,通常有一个主机(Master)和一个或多个从机(Slave),主机负责发起通信,从机响应主机的请求。 Modbus RTU(Remote Terminal Unit)是一种常用的过程控制工业通信协议,基于ASCII或RTU(远程终端单元)报文格式,常用于PLC(可编程逻辑控制器)和嵌入式系统之间的通信。Modbus RTU使用串行通信接口,如RS485,以减少布线成本和提高通信效率。 在STM32F103上实现RS485 Modbus RTU通信,首先需要配置GPIO口作为RS485的硬件接口,包括数据线(一般为RX和TX)和方向控制线(DE和RE)。DE线用于控制发送数据时的数据线方向,RE线则用于接收数据时的方向。这些设置可以通过STM32的HAL库或LL库进行编程。 接着,你需要编写Modbus RTU协议栈的实现,这包括解析和构造Modbus报文、错误检测与处理、超时管理等。Modbus RTU报文由功能码、地址、数据和CRC校验码组成。主机向从机发送请求报文,从机会根据接收到的功能码执行相应的操作,并返回响应报文。 在主机端,你需要实现发送请求和接收响应的函数,以及解析从机返回的数据。在从机端,你需要监听串口,解析接收到的请求,执行相应的功能并构造响应报文。
内容概要:本文档详细介绍了一个使用Python实现最小二乘支持向量机(LSSVM)进行时间序列预测的项目实例。项目背景指出,传统的时间序列预测方法在处理非线性、复杂数据时存在局限性,而LSSVM通过将SVM的二次规划问题转化为线性方程组求解,提高了计算效率和预测精度。项目目标包括数据预处理、特征提取、模型构建、模型评估、优化与调参以及可视化展示。项目挑战主要集中在数据质量、模型泛化能力、计算效率、模型解释性、实时性和超参数优化等方面。项目特点与创新体现在高效的预测算法、多样化的数据处理方法、自动化的特征提取、多维度的模型评估、可视化的结果展示和高效的超参数优化。最后,文档展示了模型架构和具体的代码实现,包括数据预处理、LSSVM模型的构建与训练、预测和评估。 适合人群:具备一定编程基础,特别是对Python和机器学习有一定了解的研发人员,尤其是从事时间序列预测相关工作的数据科学家和工程师。 使用场景及目标:①适用于金融、气象、交通、能源、医疗、制造业和零售业等领域的时间序列预测任务;②帮助用户理解LSSVM算法的工作原理及其相对于传统SVM的优势;③通过实际代码示例,指导用户如何实现和优化LSSVM模型,以提高预测精度和处理大规模数据的能力。 阅读建议:本项目不仅提供了详细的理论背景和技术细节,还包含了完整的代码实现和可视化工具,因此在学习过程中,建议读者结合代码逐步实践,并通过调整超参数和实验不同的数据集来加深对LSSVM的理解。同时,注意数据预处理和特征提取的重要性,这对模型性能有着关键影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值