使用 Docker 搭建 Hadoop + Hive + Spark 集群

本文探讨了使用 Docker 搭建 Hadoop + Hive + Spark 集群的方法,项目地址在此。在阅读本文前,建议先对 Docker 以及 Docker Compose 有基本的了解。

准备工作

本项目基于 Docker 和 Docker Compose,搭建的集群包含以下部分:

  • Hadoop
  • Hive
  • Spark

本项目参考了 Big Data Europe 的一些工作。项目中所使用的 Docker 镜像可能会被更新,可以参看他们的 Docker Hub 以获取最新镜像。

本项目所依赖的版本号如下:

1
2
3
4
5
6
Client:
 Version:           20.10.2
Server: Docker Engine - Community
 Engine:
  Version:          20.10.6
docker-compose version 1.29.1, build c34c88b2

快速开始

直接克隆我的项目并运行集群:

1
2
3
git clone https://gitee.com/horysk/docker-hadoop-workbench.git
cd docker-hadoop-workbench
./start_demo.sh

也可以使用 docker-compose-v2.yml,该集群包含我简单修改的 spark-master 镜像,以及额外添加的 spark-history-server 镜像。

1
./start_demo_v2.sh

使用 ./stop_demo.sh 或 ./stop_demo_v2.sh 关闭集群。你可以修改 start_demo.sh 与 stop_demo.sh 文件里的 DOCKER_COMPOSE_FILE 变量以使用其他版本的 YAML 文件。

集群内容

本集群包含以下 Container:

  • namenode
  • datanode
  • resourcemanager
  • nodemanager
  • historyserver
  • hive-server
  • hive-metastore
  • hive-metastore-postgresql
  • presto-coordinator
  • spark-master
  • spark-worker
  • spark-history-server (使用 v2 版本)

同时本集群需要用到名为 hadoop 的 network,以及以下 volume:

  • hadoop_namenode
  • hadoop_datanode
  • hadoop_historyserver
  • hive_metastore

这些都需要特别注意以避免冲突。

可交互的端口列表

综述

  • namenode: 9000, 9870
  • datanode: 9864
  • resourcemanager: 8088
  • nodemanager: 8042
  • historyserver: 8188
  • hive-server: 10000, 10002
  • hive-metastore: 9083
  • presto-coordinator: 8090
  • spark-master: 4040, 7077, 8080, 18080 (v2 版本 18080 接口由 spark-history-server 提供)
  • spark-worker: 8081

如有冲突,可以在 docker-compose.yml 里更改暴露的端口。

UI 列表

HDFS

可以使用 hdfs dfs 连接到 hdfs://localhost:9000/ (请先在本机安装 Hadoop):

1
hdfs dfs -ls hdfs://localhost:9000/

Hive

可以使用 Beeline 连接到 HiveServer2 (请先在本机安装 Hive):

1
beeline -u jdbc:hive2://localhost:10000/default -n hive -p hive

Spark

可以使用 spark-shell 通过 thrift 协议连接到 Hive Metastore (请先在本机安装 Spark):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
$ spark-shell

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.1.2
      /_/

Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 11.0.11)

scala> :paste
// Entering paste mode (ctrl-D to finish)

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder.master("local")
              .config("hive.metastore.uris", "thrift://localhost:9083")
              .enableHiveSupport.appName("thrift-test").getOrCreate

spark.sql("show databases").show


// Exiting paste mode, now interpreting.

+---------+
|namespace|
+---------+
|  default|
+---------+

import org.apache.spark.sql.SparkSession
spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@1223467f

Presto

可以使用 Presto CLI 连接 Presto 并且读取 Hive 的数据:

1
2
3
4
wget https://repo1.maven.org/maven2/com/facebook/presto/presto-cli/0.255/presto-cli-0.255-executable.jar
mv presto-cli-0.255-executable.jar presto
chmod +x presto
./presto --server localhost:8090 --catalog hive --schema default

设置列表

以下列举了容器内部的一些设置所在的位置。后面的以 CONF 结尾的是它们在 hadoop.env 中的代号。你可以参考 hadoop.env 文件做额外的设置。

  • namenode:
    • /etc/hadoop/core-site.xml CORE_CONF
    • /etc/hadoop/hdfs-site.xml HDFS_CONF
    • /etc/hadoop/yarn-site.xml YARN_CONF
    • /etc/hadoop/httpfs-site.xml HTTPFS_CONF
    • /etc/hadoop/kms-site.xml KMS_CONF
    • /etc/hadoop/mapred-site.xml MAPRED_CONF
  • hive-server:
    • /opt/hive/hive-site.xml HIVE_CONF

很可惜 Spark 的设置不在这个列表里。在 spark-master 的 /spark/conf 文件夹下可以存放 Spark 的设置,我准备了 scripts/spark-defaults.conf 与 scripts/spark-hive-site.xml 两个文件,它们已经在启动脚本里自动上传。

运行示例任务

运行 MapReduce WordCount

这部分基于 Big Data Europe’s Hadoop Docker 的项目里的运行示例。

首先我们运行一个辅助容器 hadoop-base

1
docker run -d --network hadoop --env-file hadoop.env --name hadoop-base bde2020/hadoop-base:2.0.0-hadoop3.2.1-java8 tail -f /dev/null

接下来运行以下命令以准备数据并启动 MapReduce 任务:

1
2
3
4
5
6
docker exec -it hadoop-base hdfs dfs -mkdir -p /input/
docker exec -it hadoop-base hdfs dfs -copyFromLocal -f /opt/hadoop-3.2.1/README.txt /input/
docker exec -it hadoop-base mkdir jars
docker cp jars/WordCount.jar hadoop-base:jars/WordCount.jar
docker exec -it hadoop-base /bin/bash 
hadoop jar jars/WordCount.jar WordCount /input /output

接下来,你可以通过以下链接看到任务状态:

当任务运行完成,运行以下命令查看结果:

1
hdfs dfs -cat /output/*

最后你可以使用 exit 退出该容器。

运行 Hive 任务

请首先确定 hadoop-base 正在运行中。关于如何启动此辅助容器,请参看上一节。接下来准备数据:

1
2
3
4
5
6
7
docker exec -it hadoop-base hdfs dfs -mkdir -p /test/
docker exec -it hadoop-base mkdir test
docker cp data hadoop-base:test/data
docker exec -it hadoop-base /bin/bash
hdfs dfs -put test/data/* /test/
hdfs dfs -ls /test
exit

然后新建 Hive 表:

1
2
3
4
5
docker cp scripts/hive-beers.q hive-server:hive-beers.q
docker exec -it hive-server /bin/bash
cd /
hive -f hive-beers.q
exit

接下来你就可以使用 Beeline 访问到这些数据了:

1
2
3
beeline -u jdbc:hive2://localhost:10000/test -n hive -p hive

0: jdbc:hive2://localhost:10000/test> select count(*) from beers;

同样,你可以通过以下链接看到任务状态:

运行 Spark Shell

在进行这一步前,请先参看前面两个章节以准备 Hive 数据并创建表格。然后运行以下命令:

1
docker exec -it spark-master spark/bin/spark-shell

进入 Spark Shell 后,你可以直接通过先前创建的 Hive 表进行操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
scala> spark.sql("show databases").show
+---------+
|namespace|
+---------+
|  default|
|     test|
+---------+

scala> val df = spark.sql("select * from test.beers")
df: org.apache.spark.sql.DataFrame = [id: int, brewery_id: int ... 11 more fields]

scala> df.count
res0: Long = 7822

你可以在以下两个地址看到你的 Spark Shell 会话:

如果你在运行 spark-shell 的时候遇到了以下警告:

1
WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

该警告显示没有资源可以去运行你的任务,并提醒你去检查 worker 是否都已经被注册,而且拥有足够多的资源。此时你需要使用 docker logs -f spark-master 检查一下 spark-master 的日志。不出意外的话,你会看到下面的内容:

1
WARN Master: Got heartbeat from unregistered worker worker-20210622022950-xxx.xx.xx.xx-xxxxx. This worker was never registered, so ignoring the heartbeat.

这是在提示你有一个 worker 没有被注册,所以忽略了它的心跳。该 worker 没有被注册的原因很多,很可能是之前电脑被休眠过,导致 worker 掉线。这时你可以使用 docker-compose restart spark-worker 重启 spark-worker,重启完成后,该 worker 就会被自动注册。

同样,如果要运行 spark-sql,可以使用这个命令:docker exec -it spark-master spark/bin/spark-sql

运行 Spark Submit 任务

我们直接运行 Spark 内置的示例任务 Spark Pi:

1
docker exec -it spark-master /spark/bin/spark-submit --class org.apache.spark.examples.SparkPi /spark/examples/jars/spark-examples_2.12-3.1.1.jar 100

你可以在以下两个地址看到你的 Spark Pi 任务:

本教程的集群搭建与使用方法就介绍到这里。以后可能会增加一些别的组件,会另外写文章来说明。

使用Docker搭建Hadoop + Hive + Spark集群(下) | Bambrow's Blog

### 回答1: 很抱歉,我是一名语言模型AI,无法亲自进行实际操作。但是,我可以提供一些基于Docker容器快速搭建Hadoop+Spark+Hive+HBase集群的详细过程记录的参考资料,供您参考。 1. 准备工作 首先,需要安装DockerDocker Compose。可以参考官方文档进行安装。 2. 下载镜像 可以从Docker Hub上下载HadoopSparkHive和HBase的镜像。可以使用以下命令: ``` docker pull bde2020/hadoop-base:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8 docker pull bde2020/hive:2.3.7-postgresql-metastore docker pull bde2020/spark-base:2.4.5-hadoop2.7 docker pull bde2020/spark-master:2.4.5-hadoop2.7 docker pull bde2020/spark-worker:2.4.5-hadoop2.7 docker pull bde2020/hbase:2.2.4-hadoop3.2.1-java8 ``` 3. 编写docker-compose.yml文件 可以编写一个docker-compose.yml文件来定义HadoopSparkHive和HBase的容器。以下是一个示例: ``` version: '3' services: namenode: image: bde2020/hadoop-namenode:2.0.0-hadoop3.2.1-java8 container_name: namenode ports: - "9870:9870" volumes: - ./hadoop-data/namenode:/hadoop/dfs/name environment: - CLUSTER_NAME=hadoop-cluster datanode: image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8 container_name: datanode volumes: - ./hadoop-data/datanode:/hadoop/dfs/data environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 resourcemanager: image: bde2020/hadoop-resourcemanager:2.0.0-hadoop3.2.1-java8 container_name: resourcemanager ports: - "8088:8088" environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 - YARN_CONF_yarn_resourcemanager_hostname=resourcemanager nodemanager: image: bde2020/hadoop-nodemanager:2.0.0-hadoop3.2.1-java8 container_name: nodemanager environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 - YARN_CONF_yarn_resourcemanager_hostname=resourcemanager historyserver: image: bde2020/hadoop-historyserver:2.0.0-hadoop3.2.1-java8 container_name: historyserver ports: - "8188:8188" environment: - CLUSTER_NAME=hadoop-cluster - CORE_CONF_fs_defaultFS=hdfs://namenode:8020 - YARN_CONF_yarn_resourcemanager_hostname=resourcemanager hive-metastore-postgresql: image: bde2020/hive:2.3.7-postgresql-metastore container_name: hive-metastore-postgresql ports: - "5432:5432" environment: - POSTGRES_PASSWORD=hivepassword - POSTGRES_USER=hiveuser - POSTGRES_DB=hivemetastore spark-master: image: bde2020/spark-master:2.4.5-hadoop2.7 container_name: spark-master ports: - "8080:8080" environment: - SPARK_CONF_spark_master_host=spark-master - SPARK_CONF_spark_eventLog_enabled=true - SPARK_CONF_spark_eventLog_dir=/tmp/spark-events - SPARK_CONF_spark_history_fs_logDirectory=hdfs://namenode:8020/spark-logs - SPARK_CONF_spark_history_ui_port=18080 spark-worker-1: image: bde2020/spark-worker:2.4.5-hadoop2.7 container_name: spark-worker-1 environment: - SPARK_CONF_spark_master_url=spark://spark-master:7077 - SPARK_CONF_spark_worker_cores=2 - SPARK_CONF_spark_worker_memory=2g spark-worker-2: image: bde2020/spark-worker:2.4.5-hadoop2.7 container_name: spark-worker-2 environment: - SPARK_CONF_spark_master_url=spark://spark-master:7077 - SPARK_CONF_spark_worker_cores=2 - SPARK_CONF_spark_worker_memory=2g hbase-master: image: bde2020/hbase:2.2.4-hadoop3.2.1-java8 container_name: hbase-master ports: - "16010:16010" environment: - HBASE_CONF_hbase_regionserver_hostname=hbase-master - HBASE_CONF_hbase_master_hostname=hbase-master hbase-regionserver: image: bde2020/hbase:2.2.4-hadoop3.2.1-java8 container_name: hbase-regionserver environment: - HBASE_CONF_hbase_regionserver_hostname=hbase-regionserver - HBASE_CONF_hbase_master_hostname=hbase-master ``` 4. 启动容器 可以使用以下命令启动容器: ``` docker-compose up -d ``` 5. 验证集群 可以使用以下命令验证集群: ``` docker exec -it namenode bash hdfs dfs -mkdir /test hdfs dfs -ls / exit ``` ``` docker exec -it spark-master bash spark-submit --class org.apache.spark.examples.SparkPi --master spark://spark-master:7077 /opt/spark/examples/jars/spark-examples_2.11-2.4.5.jar 10 exit ``` ``` docker exec -it hive-metastore-postgresql bash psql -h localhost -U hiveuser -d hivemetastore \dt \q exit ``` ``` docker exec -it hbase-master bash hbase shell create 'test', 'cf' list exit ``` 以上是一个基于Docker容器快速搭建Hadoop+Spark+Hive+HBase集群的详细过程记录。希望对您有所帮助。 ### 回答2: Docker是一种轻量级的虚拟化技术,可以在同一操作系统中运行多个独立的容器,各个容器之间相互隔离。通过Docker容器,快速搭建HadoopSparkHive和Hbase集群成为了可能。下面是基于Docker容器,快速搭建HadoopSparkHive和Hbase集群的详细过程记录: 1. 下载Docker技术栈 在运行Docker之前,我们需要先安装DockerDocker Compose。我们可以从官方Docker网站下载DockerDocker Compose: - Docker的下载链接:https://www.docker.com/get-started - Docker Compose的下载链接:https://docs.docker.com/compose/install/ 2. 创建docker-compose.yml文件 在运行Docker之前,我们需要创建一个docker-compose.yml文件,该文件定义了Docker容器的配置和组合。我们将以下容器定义在该文件中: - Hadoop NameNode - Hadoop DataNode - Hadoop ResourceManager - Hadoop NodeManager - Spark Master - Spark Worker - Hive Server - HBase Master 我们可以通过以下命令创建docker-compose.yml文件: ``` version: "2.2" services: namenode: container_name: namenode image: cloudera/quickstart:latest hostname: namenode ports: - "8020:8020" - "50070:50070" - "50075:50075" - "50010:50010" - "50020:50020" volumes: - ~/hadoop-data/namenode:/var/lib/hadoop-hdfs/cache/hdfs/dfs/name environment: SERVICE_PRECONDITION: HDFS_NAMENODE datanode: container_name: datanode image: cloudera/quickstart:latest hostname: datanode ports: - "50075:50075" - "50010:50010" - "50020:50020" volumes: - ~/hadoop-data/datanode:/var/lib/hadoop-hdfs/cache/hdfs/dfs/data environment: SERVICE_PRECONDITION: HDFS_DATANODE resourcemanager: container_name: resourcemanager image: cloudera/quickstart:latest hostname: resourcemanager ports: - "8088:8088" - "8030:8030" - "8031:8031" - "8032:8032" - "8033:8033" environment: SERVICE_PRECONDITION: YARN_RESOURCEMANAGER nodemanager: container_name: nodemanager image: cloudera/quickstart:latest hostname: nodemanager environment: SERVICE_PRECONDITION: YARN_NODEMANAGER sparkmaster: container_name: sparkmaster image: sequenceiq/spark:2.1.0 hostname: sparkmaster ports: - "8081:8081" command: bash -c "/usr/local/spark/sbin/start-master.sh && tail -f /dev/null" sparkworker: container_name: sparkworker image: sequenceiq/spark:2.1.0 hostname: sparkworker environment: SPARK_MASTER_HOST: sparkmaster command: bash -c "/usr/local/spark/sbin/start-worker.sh spark://sparkmaster:7077 && tail -f /dev/null" hiveserver: container_name: hiveserver image: bde2020/hive:2.3.4-postgresql-metastore hostname: hiveserver ports: - "10000:10000" environment: METASTORE_HOST: postgres META_PORT: 5432 MYSQL_DATABASE: hive MYSQL_USER: hive MYSQL_PASSWORD: hive POSTGRES_DB: hive POSTGRES_USER: hive POSTGRES_PASSWORD: hive hbasemaster: container_name: hbasemaster image: harisekhon/hbase hostname: hbasemaster ports: - "16010:16010" - "2181:2181" command: ["bin/start-hbase.sh"] ``` 3. 运行Docker容器 运行Docker容器的第一步是将docker-compose.yml文件放置在合适的路径下。在运行Docker容器之前,我们需要从Docker Hub拉取镜像,并运行以下命令: ``` $ docker-compose up -d ``` 该命令会运行所有定义在docker-compose.yml文件中的容器。 4. 配置集群 在运行Docker之后,我们需要进入相应的容器,例如进入namenode容器: ``` $ docker exec -it namenode bash ``` 我们可以使用以下命令检查HadoopSparkHive和HBase集群是否正确配置: - Hadoop集群检查: ``` $ hadoop fs -put /usr/lib/hadoop/README.txt / $ hadoop fs -ls / ``` - Spark集群检查: ``` $ spark-shell --master spark://sparkmaster:7077 ``` - Hive集群检查: ``` $ beeline -u jdbc:hive2://localhost:10000 ``` - HBase集群检查: ``` $ hbase shell ``` 5. 关闭Docker容器 在测试完成后,我们可以使用以下命令关闭所有Docker容器: ``` $ docker-compose down --volumes ``` 综上所述,Docker容器是快速搭建HadoopSparkHive和HBase集群的理想选择。通过docker-compose.yml文件,我们可以轻松配置和管理整个集群使用这种方法,可以节省大量的时间和精力,并使整个搭建过程更加方便和高效。 ### 回答3: Docker容器是一种轻型的虚拟化技术,能够快速搭建大型分布式系统集群。可以使用Docker容器快速搭建HadoopSparkHive和HBase集群。下面是基于Docker容器搭建大数据集群的详细过程记录: 1.安装DockerDocker-Compose 首先需要安装DockerDocker-Compose。可以按照官方文档详细教程进行安装。 2.创建Docker文件 创建一个Dockerfile文件用于构建HadoopSparkHive和HBase的镜像。在该文件内添加以下内容: FROM ubuntu:16.04 RUN apt-get update # Install JDK, Python, and other dependencies RUN apt-get install -y openjdk-8-jdk python python-dev libffi-dev libssl-dev libxml2-dev libxslt-dev # Install Hadoop RUN wget http://www.eu.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz RUN tar -xzvf hadoop-2.7.7.tar.gz RUN mv hadoop-2.7.7 /opt/hadoop # Install Spark RUN wget http://www.eu.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz RUN tar -zxvf spark-2.4.0-bin-hadoop2.7.tgz RUN mv spark-2.4.0-bin-hadoop2.7 /opt/spark # Install Hive RUN wget http://www.eu.apache.org/dist/hive/hive-2.3.4/apache-hive-2.3.4-bin.tar.gz RUN tar -zxvf apache-hive-2.3.4-bin.tar.gz RUN mv apache-hive-2.3.4-bin /opt/hive # Install HBase RUN wget http://www.eu.apache.org/dist/hbase/hbase-1.4.9/hbase-1.4.9-bin.tar.gz RUN tar -zxvf hbase-1.4.9-bin.tar.gz RUN mv hbase-1.4.9 /opt/hbase # Set Environment Variables ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64 ENV HADOOP_HOME /opt/hadoop ENV SPARK_HOME /opt/spark ENV HIVE_HOME /opt/hive ENV HBASE_HOME /opt/hbase ENV PATH $PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SPARK_HOME/bin:$HIVE_HOME/bin:$HBASE_HOME/bin # Format HDFS RUN $HADOOP_HOME/bin/hdfs namenode -format 3.创建Docker-Compose文件 创建一个docker-compose文件,里面有一个master节点和两个worker节点。在docker-compose文件中添加以下内容: version: "3" services: master: image: hadoop-spark-hive-hbase container_name: master hostname: master ports: - "22" - "8088:8088" - "8030:8030" - "8031:8031" - "8032:8032" - "9000:9000" - "10020:10020" - "19888:19888" - "50010:50010" - "50020:50020" - "50070:50070" - "50075:50075" volumes: - /data:/data command: - /usr/sbin/sshd - -D worker1: image: hadoop-spark-hive-hbase container_name: worker1 hostname: worker1 ports: - "22" - "50010" - "50020" - "50075" volumes: - /data:/data command: - /usr/sbin/sshd - -D worker2: image: hadoop-spark-hive-hbase container_name: worker2 hostname: worker2 ports: - "22" - "50010" - "50020" - "50075" volumes: - /data:/data command: - /usr/sbin/sshd - -D 4.构建镜像 运行以下命令来构建镜像: docker build -t hadoop-spark-hive-hbase . 5.启动容器 运行以下命令来启动容器: docker-compose up -d 6.测试集群 在浏览器中输入http://IP地址:8088,可以看到Hadoop和YARN的Web控制台。 在浏览器中输入http://IP地址:50070,可以看到HDFS的Web控制台。 在浏览器中输入http://IP地址:8888,可以看到Jupyter Notebook。 在Jupyter Notebook中,创建一个Python文件并运行以下代码来测试Spark集群: from pyspark import SparkContext sc = SparkContext() rdd1 = sc.parallelize(range(1000)) rdd2 = sc.parallelize(range(1000, 2000)) rdd3 = rdd1.union(rdd2) rdd3.take(10) 以上就是基于Docker容器快速搭建HadoopSparkHive和HBase集群的详细过程记录。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值