- 博客(57)
- 收藏
- 关注
原创 基于华为昇思MindSpore实现深度学习图神经网络(GNN)
图神经网络(Graph Neural Networks, GNN)是深度学习的重要分支,专注于处理图结构数据,在社交网络分析、分子结构预测、推荐系统等领域广泛应用。华为昇思(MindSpore)作为高效的深度学习框架,为 GNN 提供了灵活的实现途径。此实验采用 Cora 数据集,它是一个常见的引用网络数据集,其中节点代表论文,边表示引用关系,节点类别表示论文所属的学科。DGL(Deep Graph Library)是一个高效的图处理库,方便构建图数据。:结合节点的度、文本特征等提升表达能力。
2025-03-30 00:13:52
279
原创 基于华为昇思MindSpore实现深度学习卷积神经网络(CNN)
华为昇思(MindSpore)作为一款高效、易用的深度学习框架,为 CNN 的构建与训练提供了强大支持。使用 MNIST 数据集,该数据集包含 60,000 张训练图片和 10,000 张测试图片,每张图片为 28×28 的灰度手写数字。CNN 由卷积层(Conv)、池化层(Pooling)和全连接层(FC)组成,以下实现一个典型的 LeNet-5 网络结构。通过 MindSpore 的高效计算能力,可以更快速地训练和部署深度学习模型,使 CNN 在实际任务中发挥更大作用。进行数据扩增,提高泛化能力。
2025-03-30 00:08:36
401
原创 走进DeepSeek与MindSpore:新手入门技术指南
DeepSeek是一个人工智能模型,专门为编程和开发设计。想象它是一个聪明的小助手,随时为你提供代码建议、解答技术问题,甚至帮你调试代码。它的目标是让开发者(无论是新手还是老手)更高效地完成工作。用途:写代码、找 bug、学习编程知识。特点:简单易用,实时响应。
2025-03-29 23:58:56
670
原创 零基础入门:利用 MindSpore 和 DeepSeek 进行深度学习实践
本篇博客介绍了如何结合 MindSpore 和 DeepSeek 进行零基础深度学习实践。从模型构建、数据加载到训练优化,我们展示了如何利用 MindSpore 进行高效的深度学习开发,同时借助 DeepSeek 降低代码编写难度。
2025-03-29 23:43:47
447
原创 基于华为昇思MindSpore实现强化学习Q-Learning算法
Q-Learning 通过学习状态-动作值函数(Q值函数)来指导智能体的决策。Qsa←Qsaαrγmaxa′Qs′a′−QsaQsa←Qsaαrγa′maxQs′a′−Qsa)]QsaQ(s, a)Qsa代表状态sss下采取动作aaa的价值。α\alphaα为学习率。γ\gammaγ为折扣因子。rrr为即时奖励。s′s's′为执行动作后转移到的新状态。
2025-03-29 18:39:13
691
原创 基于华为昇思MindSpore实现SAC(Soft Actor-Critic)算法
SAC是基于最大熵强化学习的Actor-Critic方法,核心思想是在优化奖励的同时保持策略的探索性。Jπ∑tEstat∼ρπrstatαHπ⋅∣stJπt∑Estat∼ρπrstatαHπ⋅∣st))]其中,HπH(\pi)Hπ是策略的熵,α\alphaα是温度参数,用于权衡探索与利用。策略网络(Actor): 生成动作,使用重参数化技巧进行优化。
2025-03-29 18:31:39
815
原创 使用华为昇思MindSpore实现强化学习中的Actor-Critic算法
演员-评论家算法(Actor-Critic, AC)作为一种结合策略梯度(Policy Gradient)和值函数(Value Function)的强化学习方法,因其高效性和稳定性而备受关注。本篇博客会介绍Actor-Critic算法的核心原理,并基于华为的深度学习框架MindSpore实现一个简单的AC算法,应用于经典的CartPole环境。通过这种方式,Actor-Critic在探索和收敛之间取得了平衡,相较于纯策略梯度方法(如REINFORCE)具有更低的方差。
2025-03-29 18:18:40
659
原创 零基础入门强化学习:基于MindSpore与DeepSeek的实践
强化学习是一种通过与环境交互并根据奖励信号调整策略的学习方法。智能体(Agent):在环境中执行动作的学习系统。环境(Environment):智能体与之交互的外部系统。状态(State, s):描述环境当前情况的变量。动作(Action, a):智能体可以执行的决策。奖励(Reward, r):衡量动作好坏的信号。策略(Policy, π):决定智能体在特定状态下选择何种动作的规则。强化学习的目标是学习一个最优策略,使得智能体在长期内获得最大的累积奖励。
2025-03-29 17:14:37
417
原创 零基础入门MindSpore与DeepSeek
MindSpore 是由华为开发的 AI 框架,旨在提供高效、易用、安全的深度学习开发环境。它支持多种硬件平台(CPU、GPU、Ascend),并具备自动并行、动态图计算等特性。DeepSeek 是一个国产大语言模型,类似于 OpenAI 的 GPT-4,专注于中文文本理解与生成,支持代码补全、问答等功能。本篇博客介绍了 MindSpore 和 DeepSeek 的基本概念、安装方法及其核心功能,并通过一个结合 MindSpore 与 DeepSeek 的示例,展示了如何利用大模型自动生成代码并执行。
2025-03-29 17:10:01
309
原创 零基础入门使用华为 MindSpore 与 DeepSeek 搭建深度学习应用
MindSpore 是华为推出的一个开源深度学习框架,旨在为开发者提供一个高效、灵活且易于扩展的工具,支持多种AI应用场景,包括计算机视觉、自然语言处理、语音识别等。MindSpore 提供了丰富的API和模块化设计,使得从模型训练到部署的各个环节都能高效执行。DeepSeek是华为推出的一款针对智能设备的深度学习推理引擎。它能够高效执行深度学习模型的推理任务,并优化模型部署的速度与精度。DeepSeek 的主要特点是灵活、高效且兼容性强,支持多种模型格式,并且能够在不同硬件环境下实现高性能推理。
2025-03-28 18:42:06
616
原创 从零开始:用MindSpore和DeepSeek打造你的第一个AI助手
MindSpore是华为开发的一款AI工具,简单来说,它就像一个“超级大脑”,能帮助电脑理解和运行复杂的AI模型。它不仅可以在云端的大服务器上工作,还能适配手机、边缘设备等各种场景。MindSpore的特别之处在于,它能让AI运行得更快、更省力,尤其是在华为自己的昇腾芯片上。通过MindSpore和DeepSeek,我们已经迈出了AI世界的第一步。从安装到跑模型,我们用最简单的方式打造了一个会说话的AI助手。这只是开始——MindSpore的强大优化和DeepSeek的聪明才智,能带你探索更多可能。
2025-03-28 17:09:28
1360
原创 华为MindSpore与DeepSeek:国产AI生态的协同创新
华为MindSpore和DeepSeek的结合不仅是技术层面的创新,更是国产AI生态崛起的缩影。MindSpore提供了高效的计算框架和硬件支持,而DeepSeek则以其高性价比和推理能力为行业树立了标杆。二者的协同不仅推动了中国AI技术的自主化进程,也为全球开发者提供了更多选择。
2025-03-28 16:50:30
702
原创 基于华为MindSpore的预训练语言模型(BERT & GPT)应用实战笔记
预训练语言模型(PLM)是自然语言处理(NLP)领域的核心技术,如BERT、GPT等。华为MindSpore提供了一系列工具,支持高效的BERT和GPT训练与推理。
2025-03-26 19:51:53
158
原创 基于MindSpore实现深度前馈神经网络(DNN)
DNN由多个全连接层(Fully Connected Layer)组成,每一层的神经元与前一层所有神经元相连。输入层(Input Layer):接受原始数据,如图像像素或文本特征。隐藏层(Hidden Layers):包含多个全连接层,应用非线性激活函数(如ReLU)。输出层(Output Layer):根据任务类型,采用Softmax(分类任务)或线性激活(回归任务)。ZW⋅XbZW⋅XbAfZA = f(Z)AfZ其中,WWW是权重矩阵,bbb。
2025-03-26 11:28:49
468
原创 基于MindSpore实现强化学习DQN算法
经验回放(Experience Replay):使用回放缓冲区存储过去的经验数据,并在训练时随机采样,以降低数据相关性。目标网络(Target Network):使用一个固定的目标Q网络来计算目标Q值,减少训练过程中的不稳定性。Q学习更新Qsa←Qsaαrγmaxa′Qs′a′−QsaQsa←Qsaαrγa′maxQs′a′−Qsa。
2025-03-26 11:23:08
1044
1
原创 基于MindSpore 实现梯度策略(Policy Gradient)
在强化学习中,智能体(Agent)在某个状态(State,SSS下,基于策略πhetaa∣sπhetaa∣s选择动作(Action,AAA,然后从环境中获得奖励(Reward,RRR,并进入下一个状态。整个过程可以用马尔可夫决策过程(MDP)表示。目标:找到最优策略π∗\pi^*π∗JθE∑t0TγtRtJθEt0∑TγtRt其中γ\gammaγ是折扣因子,衡量未来奖励的重要性。
2025-03-26 11:16:08
1191
原创 基于MindSpore实现强化学习PPO算法笔记
强化学习的核心思想是通过智能体(Agent)与环境(Environment)交互,基于奖励信号优化策略。状态(State, S):环境的当前状况。动作(Action, A):智能体采取的行为。奖励(Reward, R):环境对动作的反馈。策略(Policy, π):从状态到动作的映射。目标是找到一个最优策略 π*,最大化长期累积奖励。
2025-03-23 11:14:17
802
原创 MindSpore:全场景AI计算框架的技术革新与应用实践
MindSpore作为华为倾力打造的全栈AI计算框架,不仅承载着推动AI技术普惠化的使命,更通过其颠覆性设计重构了AI开发范式。该框架以"端-边-云"无缝协同为战略愿景,深度融合深度学习、强化学习与图神经网络等前沿技术,在异构计算、自动化建模、分布式训练等领域展现出显著的技术代际优势。作为Apache 2.0开源生态的重要成员,MindSpore已构建起包含Ascend、GPU、CPU及多种NPU在内的跨平台硬件支持矩阵,正在成为智能时代的关键技术底座。
2025-03-21 16:51:18
523
原创 华为昇思MindSpore强化学习入门指南:从零构建智能决策模型
• MindSpore官方强化学习文档:https://www.mindspore.cn/reinforcement/docs/zh-CN/master。• 《深度强化学习:实践》- 华为技术有限公司著。• 调整探索率epsilon衰减策略。• 检查奖励函数设计是否合理。• 验证网络梯度是否正常更新。
2025-03-21 16:39:33
283
原创 基于华为MindSpore的自然语言处理:技术突破与应用全景
华为MindSpore正在通过全场景覆盖软硬协同优化开发者友好生态三大战略,推动NLP技术进入工业化落地新阶段。随着MindSpore 3.0版本对动态形状、稀疏计算等功能的增强,预计未来三年将催生百亿级参数的端侧NLP应用场景。参考文献[1] MindSpore官方技术白皮书 v2.2[2] 华为云自然语言处理最佳实践注:本文涉及的具体性能数据均来自华为实验室测试环境,实际效果可能因场景不同有所差异。建议访问MindSpore官方GitHub获取最新代码资源。
2025-03-21 16:13:46
761
原创 基于MindSpore的Transformer实现
Transformer作为自然语言处理(NLP)和计算机视觉(CV)领域的核心模型架构,已被广泛应用于机器翻译、文本生成、语义理解等任务。华为自研的AI框架MindSpore提供了高效的计算图优化和分布式训练能力,使得在MindSpore上实现Transformer成为一种高效且可扩展的选择。位置编码通过为每个位置生成唯一的编码向量,使模型能够识别元素在序列中的绝对位置。通过多个注意头,同时深入分析词意关系,在这个基础上,积积成深层的Transformer模型,将输入核心求和。Transformer包含。
2025-03-20 21:35:54
627
原创 从零入门华为昇思MindSpore:快速掌握新一代AI框架的核心技能
作为首个实现"端-边-云"全栈协同的AI框架,MindSpore不仅支持传统服务器训练,更在移动端推理、边缘计算等场景展现出独特优势。其创新的自动并行技术和全场景统一API设计,正在重塑AI开发者的工作流程。GPU版本:CUDA 10.1/11.1 + cuDNN 7.6+CPU版本:AVX指令集支持推荐系统:Ubuntu 18.04/20.04, CentOS 7.6+1.3 开发工具链配置 IDE推荐:PyCharm Professional + MindSpore插件调试工具:Mind
2025-03-20 20:07:58
371
原创 在昇腾AI处理器上部署MindSpore的环境配置指南
昇腾AI处理器是华为自主研发的AI芯片,针对AI计算进行了深度优化。Ascend 310:专为边缘计算设计,适用于智能设备、智能制造等场景。Ascend 910:面向数据中心和云计算,提供高效的AI计算能力,支持大规模AI模型的训练与推理。MindSpore深度学习框架已经针对昇腾AI处理器进行了优化,使得开发者能够最大限度地利用硬件性能,进行高效的训练和推理工作。
2025-01-22 10:27:08
1600
1
原创 使用MindSpore进行深度学习模型训练的完整指南
MindSpore是华为推出的一款深度学习框架,旨在为从端到云的AI开发提供一体化支持。MindSpore具备高效性、灵活性、自动化等特点,支持多种硬件平台(如GPU、Ascend等),能够有效提升深度学习模型训练和推理的效率。我们创建一个简单的神经网络,包括输入层、一个隐藏层和输出层。self.fc1 = nn.Dense(784, 128) # 输入层到隐藏层self.fc2 = nn.Dense(128, num_classes) # 隐藏层到输出层。
2025-01-22 10:18:18
585
原创 零基础学习MindSpore深度学习框架笔记
MindSpore是华为公司自研的开源深度学习框架,旨在为开发者提供一个从端到云的一体化AI开发平台。其设计目标是解决传统AI框架在模型训练、推理、部署等方面的瓶颈,特别是在提升计算性能、降低能源消耗、优化硬件资源使用等方面具有显著优势。深度学习是机器学习的一种方法,旨在通过构建包含多层神经网络的模型来模拟人类大脑的认知过程。深度学习通常用于图像识别、语音识别、自然语言处理等任务。深度学习的核心思想是通过反向传播算法训练神经网络,逐步调整网络中的参数,使得模型能够从输入数据中学习到有效的特征和规律。
2025-01-22 10:09:35
623
原创 华为昇思MindSpore应用——FCN图像语义分割
图像语义分割是计算机视觉中的一个经典任务,它的目标是为每一个像素分配一个标签,从而实现图像的精细化理解。与传统的图像分类任务不同,语义分割要求不仅识别出物体的种类,还需要准确地定位每个物体的像素级边界。是一种经典的语义分割方法。它是通过将传统卷积神经网络(CNN)中的全连接层替换成卷积层来实现像素级的预测。FCN的关键思想是通过逐像素预测分割结果,保留了图像中的空间信息,有效提高了图像分割的精度。FCN的基本结构由卷积层、池化层和反卷积层(上采样)组成。
2025-01-22 10:02:20
601
原创 深入探索MindSpore:深度学习入门
MindSpore是华为自主研发的全场景深度学习框架,旨在为AI应用提供一站式的支持。与其他深度学习框架(如TensorFlow和PyTorch)类似,MindSpore提供了丰富的API,用于构建、训练、优化和推理各种深度学习模型。MindSpore的设计目标是支持AI领域的各类应用,包括自然语言处理(NLP)、计算机视觉(CV)、语音识别等。它不仅支持常见的神经网络模型,还具备分布式训练和推理能力,能够在不同的硬件平台(如CPU、GPU、昇腾AI处理器)上高效运行。
2025-01-22 09:58:50
795
原创 零基础入门强化学习:基于MindSpore实现Transformer模型
在MindSpore中实现Transformer模型时,首先需要构建核心组件:多头自注意力机制、前馈神经网络和位置编码等。接下来,我们会逐步解析每个组件的实现方式。
2025-01-22 09:29:38
294
原创 深入理解Transformer:基于MindSpore的实现
Transformer模型由Vaswani等人于2017年提出,其最重要的创新是完全基于自注意力机制(Self-Attention),摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)。编码器(Encoder):将输入序列映射为一个表示输入语义的上下文向量。解码器(Decoder):根据上下文向量生成目标序列。其中,自注意力机制在模型中发挥着至关重要的作用,它使得模型能够在每个位置上“注意到”输入序列中其他位置的信息,从而捕捉到不同词之间的关系。华为的MindSpore。
2025-01-22 09:23:18
1030
原创 基于MindSpore深度学习框架的NLP机器翻译与文本生成
本文介绍了如何使用华为MindSpore框架实现机器翻译和文本生成任务。通过构建一个Transformer模型和GPT模型,我们能够对自然语言进行翻译和生成。在实际开发中,你可以根据自己的需求进一步优化模型,利用更多的数据进行训练,并将其应用到实际的生产环境中。
2025-01-22 09:17:29
372
原创 零基础入门使用华为MindSpore AI框架学习笔记
MindSpore是华为推出的全场景AI计算框架,旨在为开发者提供一个高效、灵活且易用的AI开发平台。它支持从深度学习到机器学习的各种算法,能够在云端、大数据中心、边缘计算设备、智能终端等多种场景中应用。MindSpore的优势在于其优化过的硬件加速、自动化开发流程、全栈式一体化架构,以及对昇腾芯片等硬件平台的深度整合。MindSpore不仅支持图形化开发,还允许开发者在分布式计算、大规模数据处理以及物联网设备上灵活部署模型。
2025-01-22 09:12:36
986
原创 华为MindSpore AI框架:探索下一代智能计算平台
MindSpore是华为开发的全场景AI计算框架,旨在为开发者提供一个高效、灵活、灵活的AI开发平台。它支持深度学习、机器学习等人工智能多种算法的训练和推理,并能针对不同的硬件平台进行优化,包括云端、大数据中心、边缘设备以及智能终端。MindSpore的设计理念是为了打破传统AI框架的架构,采用全栈一体化的架构,不仅关注深度学习算法的计算性能,还特别优化了算法的训练效率、推理速度、硬件资源利用率等方面。
2025-01-22 09:08:55
1099
1
原创 结构体使用
3、实现函数计算某一年的第几天的日期是多少(例如2015年第45天的日期是Feb 14, 2015),注意闰年,函数返回值使用Date。"函数计算某一年第几天的日期是多少:\n""函数计算某一年第几天的日期是多少:\n""%d月 %d日, %d\n""%d月 %d日, %d\n""计算两个日期的差值:\n""%d月 %d日,%d\n""计算两个日期的差值:\n""%d月 %d日,%d\n""函数输出一个日期:\n""函数输出一个日期:\n""请输入第几天:\n""请输入第几天:\n""请输入年份:\n"
2024-12-28 09:53:47
246
原创 指向指针的指针数组
用指向指针的指针数组方法对10个英文单词排序,每个单词的大小由该单词中最后一个字母决定,最后一个字母相同则由倒是第二个字母决定,依次类推。例如apple>banana,因为e > a,apple<blue,因为l < u。
2024-12-28 09:52:06
209
原创 在函数中使用指针(二)
已知有一已排好序的整数数组a[100],里面的元素可以是随机生成的,从中找出是否有元素15。3) 将要查找的数跟第i个数对比,如果比它大,则令i+=n/4,如果比他小,则令i-=n/4。提示:如果数据已经排好顺序,折半查找法可以用较快的速度查找到数据。//用rand函数生成0-100的随机数,并赋值给数组a[i]."随机初始化数组的100个数(范围是0-100).\n"4) 如果找到了这个数,查找结束,否则返回步骤2)。\na[%d]=%d""请输入你想查找的元素:\n"//用当前系统时间设置种子.
2024-12-28 09:50:24
341
原创 在函数中使用指针
2) 试分别用p1和p2得到a[2][2]内容和a[2][2]的地址。1) 试分别使用指针变量p1和p2输出数组a中每个元素的内容。"a[2][2]=%d,a[2][2]的地址是%p""a[2][2]=%d,a[2][2]的地址是%p""a[2][2]=%d,a[2][2]的地址是%p""a[2][2]=%d,a[2][2]的地址是%p"
2024-12-28 09:47:57
279
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人