【题目链接】
【前置技能】
- 反演
- 容斥原理
- 二分答案
【题解】
- 题目要求的是第 k k k个 μ \mu μ值不为 0 0 0的数, k k k达到了 1 0 9 10^9 109,显然不能把 μ \mu μ全部筛出来直接暴力找。
- 考虑二分答案,那么问题转化为求 1 ∼ n 1 \sim n 1∼n中的 μ \mu μ值为零的数的个数。容斥原理:个数为所有素数的平方的倍数的个数;发现两个素数乘积的平方的倍数被重复计算(如 k ∗ 2 2 ∗ 3 2 k*2^2*3^2 k∗22∗32,会被 k ∗ 2 2 k*2^2 k∗22和 k ∗ 3 2 k*3^2 k∗32分别计算一次),将其减去;发现三个素数乘积的平方的倍数被重复计算,将其加上……发现容斥系数就是 μ \mu μ的值,所以 1 1 1~ n n n中的 μ \mu μ值为零的数的个数为 ∑ i = 1 ⌊ n ⌋ μ ( i ) ∗ n i 2 \displaystyle \sum_{i=1}^{\lfloor \sqrt {n} \rfloor} {\mu(i) * \frac {n}{i^2}} i=1∑⌊n⌋μ(i)∗i2n。
- 二分的最大值应为 2 ∗ k 2*k 2∗k, 2 2 2^2 22的倍数每 4 4 4个数会出现一次,所有其他素数的平方的倍数平均每 4 4 4个数出现不到一次,配合打表发现满足这个范围。
- 时间复杂度 O ( l o g N ∗ N ) O(logN*\sqrt N) O(logN∗N)
【代码】
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
int Q, k, miu[100010];
template <typename T> void chkmin(T &x, T y){x = min(x, y);}
template <typename T> void chkmax(T &x, T y){x = max(x, y);}
template <typename T> void read(T &x){
x = 0; int f = 1; char ch = getchar();
while (!isdigit(ch)) {if (ch == '-') f = -1; ch = getchar();}
while (isdigit(ch)) {x = x * 10 + ch - '0'; ch = getchar();}
x *= f;
}
bool ok(int n){
LL ret = 0;
for (int i = 1; i * i <= n; ++i)
ret += miu[i] * (n / (i * i));
return ret >= k;
}
void init(){
int n = 100000;
miu[1] = 1;
for (int i = 1; i <= n; ++i)
for (int j = i + i; j <= n; j += i)
miu[j] -= miu[i];
}
int main(){
init();
read(Q);
while (Q--){
read(k);
int l = 1, r = k * 2;
while (l + 1 < r){
int mid = (1ll * l + r) >> 1;
if (ok(mid)) r = mid;
else l = mid;
}
if (ok(l)) printf("%d\n", l);
else printf("%d\n", r);
}
return 0;
}