【BZOJ2440】[中山市选2011]完全平方数

【题目链接】

【前置技能】

  • 反演
  • 容斥原理
  • 二分答案

【题解】

  • 题目要求的是第 k k k μ \mu μ值不为 0 0 0的数, k k k达到了 1 0 9 10^9 109,显然不能把 μ \mu μ全部筛出来直接暴力找。
  • 考虑二分答案,那么问题转化为求 1 ∼ n 1 \sim n 1n中的 μ \mu μ值为零的数的个数。容斥原理:个数为所有素数的平方的倍数的个数;发现两个素数乘积的平方的倍数被重复计算(如 k ∗ 2 2 ∗ 3 2 k*2^2*3^2 k2232,会被 k ∗ 2 2 k*2^2 k22 k ∗ 3 2 k*3^2 k32分别计算一次),将其减去;发现三个素数乘积的平方的倍数被重复计算,将其加上……发现容斥系数就是 μ \mu μ的值,所以 1 1 1~ n n n中的 μ \mu μ值为零的数的个数为 ∑ i = 1 ⌊ n ⌋ μ ( i ) ∗ n i 2 \displaystyle \sum_{i=1}^{\lfloor \sqrt {n} \rfloor} {\mu(i) * \frac {n}{i^2}} i=1n μ(i)i2n
  • 二分的最大值应为 2 ∗ k 2*k 2k 2 2 2^2 22的倍数每 4 4 4个数会出现一次,所有其他素数的平方的倍数平均每 4 4 4个数出现不到一次,配合打表发现满足这个范围。
  • 时间复杂度 O ( l o g N ∗ N ) O(logN*\sqrt N) O(logNN )

【代码】

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define LL  long long
using namespace std;
int Q, k, miu[100010]; 
 
template <typename T> void chkmin(T &x, T y){x = min(x, y);}
template <typename T> void chkmax(T &x, T y){x = max(x, y);}
template <typename T> void read(T &x){
    x = 0; int f = 1; char ch = getchar();
    while (!isdigit(ch)) {if (ch == '-') f = -1; ch = getchar();}
    while (isdigit(ch)) {x = x * 10 + ch - '0'; ch = getchar();}
    x *= f;
}
 
bool ok(int n){
    LL ret = 0;
    for (int i = 1; i * i <= n; ++i)
        ret += miu[i] * (n / (i * i));
    return ret >= k;
}
 
void init(){
    int n = 100000;
    miu[1] = 1;
    for (int i = 1; i <= n; ++i)
        for (int j = i + i; j <= n; j += i)
            miu[j] -= miu[i];
}
 
int main(){
    init();
    read(Q);
    while (Q--){
        read(k);
        int l = 1, r = k * 2;
        while (l + 1 < r){
            int mid = (1ll * l + r) >> 1;
            if (ok(mid)) r = mid;
            else l = mid;
        } 
        if (ok(l)) printf("%d\n", l);
        else printf("%d\n", r);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值