BZOJ2440: [中山市选2011]完全平方数

莫比乌斯函数

题目传送门

把题目转化一下,即求 ni=1μ2(i)k ∑ i = 1 n μ 2 ( i ) ≥ k 的最小 n n

先二分答案,变成计算i=1nμ2(i)

有一个我并不会证明的结论: μ2(n)=d2|nμ(d) μ 2 ( n ) = ∑ d 2 | n μ ( d )

于是推推式子: ni=1μ2(i)=ni=1d2|nμ(d)=nd=1μ(d)xd2 ∑ i = 1 n μ 2 ( i ) = ∑ i = 1 n ∑ d 2 | n μ ( d ) = ∑ d = 1 n μ ( d ) ⌊ x d 2 ⌋

然后枚 d d <script type="math/tex" id="MathJax-Element-47">d</script>直接算就好了。

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 40547
using namespace std;
int t,n,mu[N],p[N],c,l,r;
bool f[N];
inline void makep(){
    for (int i=2;i<N;i++){
        if (!f[i]) p[++c]=i,mu[i]=-1;
        for (int j=1,k;j<=c&&(k=p[j]*i)<N;j++){
            f[k]=true,mu[k]=-mu[i];
            if (i%p[j]==0) { mu[k]=0; break; }
        }
    }
}
inline int calc(int x){
    int sum=0,l=sqrt(x);
    for (int i=1;i<=l;i++) 
        sum+=mu[i]*x/(i*i);
    return sum>=n;
}
int main(){
    scanf("%d",&t),mu[1]=1,makep();
    while (t--){
        scanf("%d",&n); int l=1,r=2e9;
        while (l<=r){
            int mid=(long long)l+r>>1;
            if (calc(mid)) r=mid-1;
            else l=mid+1;
        }
        printf("%d\n",l);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值