你来到一个迷宫前。该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分数。还有若干双向道路连结这些房间,你沿着这些道路从一个房间走到另外一个房间需要一些时间。游戏规定了你的起点和终点房间,你首要目标是从起点尽快到达终点,在满足首要目标的前提下,使得你的得分总和尽可能大。现在问题来了,给定房间、道路、分数、起点和终点等全部信息,你能计算在尽快离开迷宫的前提下,你的最大得分是多少么?
输入
第一行4个整数n (<=500), m, start, end。n表示房间的个数,房间编号从0到(n - 1),m表示道路数,任意两个房间之间最多只有一条道路,start和end表示起点和终点房间的编号。 第二行包含n个空格分隔的正整数(不超过600),表示进入每个房间你的得分。 再接下来m行,每行3个空格分隔的整数x, y, z (0<z<=200)表示道路,表示从房间x到房间y(双向)的道路,注意,最多只有一条道路连结两个房间, 你需要的时间为z。 输入保证从start到end至少有一条路径。
输出
一行,两个空格分隔的整数,第一个表示你最少需要的时间,第二个表示你在最少时间前提下可以获得的最大得分。
输入示例
3 2 0 2 1 2 3 0 1 10 1 2 11
输出示例
21 6
需要注意的是, 当走的最短路相同时 ,我们要选择分数大的 那条路, 其他的套用模板就可以
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stdio.h>
#include <vector>
const int inf=1<<29;
bool vis[10101];
int score_res[10101];
int pre[10101];
int score[1011];
int dis[10101];
int maps[510][510];
int n,m;
using namespace std;
void intput()
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
maps[i][j]=inf;
if(i==j)
maps[i][j]=0;
}
for(int i=0;i<n;i++)
{
scanf("%d",&score_res[i]);
}
int x,y,z;
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&x,&y,&z);
if(z<maps[x][y])
maps[x][y]=maps[y][x]=z;
}
}
void Dijstra(int v0)
{
for(int i=0;i<=n;i++)
{
dis[i]=maps[v0][i];
if(dis[i]==inf)
pre[i]=-1;
else
pre[i]=v0;
}
memset(vis,0,sizeof(vis));
pre[v0]=- 1;
memcpy(score,score_res,sizeof(int)*n);
// vis[v0]=true;
int mid,u;
for(int i=1;i<n;i++)
{
mid=inf;
u=-1;
for(int j=0;j<n;j++)
{
if(!vis[j]&&mid>dis[j])
{
mid=dis[j];
u=j;
}
}
vis[u]=true;
for(int j=0;j<n;j++)
{
if(!vis[j]&&maps[u][j]+dis[u]==dis[j])//做个比较
{
int hh=pre[j];
pre[j]=u;
score[j]=score_res[j]+max(score[u],score[hh]);
}
else if(!vis[j]&&maps[u][j]+dis[u]<dis[j])
{
dis[j]=maps[u][j]+dis[u];
pre[j]=u;
score[j]=score_res[j]+score[u];
}
}
}
}
int main()
{
int s,e;
cin>>n>>m>>s>>e;
intput();
Dijstra(s);
cout<<dis[e]<<" "<<score[e]<<endl;
return 0;
}