M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3645 Accepted Submission(s): 1140
Problem Description
M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
Sample Input
0 1 0 6 10 2
Sample Output
0 60
123
题意很明确, 求F(N)
一般求法肯定不行;
推公式 写出F(1)=b F(2)=ab F(3)=ab^2 F(4)=a^2b^3 F(5)=a^3b^5 F(6)=a^5b^8 会发现 对于 b的^ 而言 是一个斐波那契数列 而且是第 N 项 a的^是第N-1 项
所以转化成 F(N)= a^fib(n-1) * b^fib(n)
但是 对于斐波那契数列而言 后面的非常大 已经超过long long 了 而且 效率也不高, 但是 矩阵快速幂 就可以在log(N) 内 解决:
F(0)=0,F(1) =1 ,F(2) =3
这是斐波那契数列 矩阵 转换形式 F(0)=0,F(1) =1 ,F(2) =3
然后 在利用 快速幂 , 让我头疼不已的是 一直WA 问题在于 快速幂上, 因为数非常大 可能会超;
所以得利用 费马小定理:
假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p),即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
a(p-1)≡1(mod p)
a^n= a^(n%(p-1)) %p 1000000007又是一个素数;
因此在求矩阵的时候 需要 %(p-1) **************** 这里 就是问题所在
代码:
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <algorithm>
#include <cstring>
typedef long long ll;
const ll MOD=1000000007;
const int N= 12;
const int MAXN=2;
using namespace std;
struct Matrix{
ll arr[N][N];
void init()
{
memset(arr,0,sizeof(arr));
for(int i=0;i<MAXN;i++)
arr[i][i]=1;//初始化单位矩阵
}
void iinit()
{
memset(arr,0,sizeof(arr));
arr[0][0]=arr[0][1]=arr[1][0]=1;
}
}A;
Matrix mul(Matrix X,Matrix Y)// 矩阵乘法
{
Matrix ans;
for(int i=0;i<MAXN;i++)
for(int j=0;j<MAXN;j++){
ans.arr[i][j]=0;
for(int k=0;k<MAXN;k++){
ans.arr[i][j]+=X.arr[i][k]*Y.arr[k][j];
ans.arr[i][j]%=(MOD-1);// 费马小定理应用
}
}
return ans;
}
Matrix Q_pow(Matrix B,ll n)// ¾ØÕó¿ìËÙÃÝ
{
Matrix ans;
ans.init();
while(n)
{
if(n&1)
ans=mul(ans,B);
n>>=1;
B=mul(B,B);
}
return ans;
}
Matrix Add(Matrix a,Matrix b) //(a+b)%mod 矩阵加法
{
int i,j,k;
Matrix ans;
for(i=0;i<MAXN;i++)
for(j=0;j<MAXN;j++)
{
ans.arr[i][j]=a.arr[i][j]+b.arr[i][j];
ans.arr[i][j]%=MOD;
}
return ans;
}
Matrix Sum(Matrix a,int n)// 矩阵和
{
int m;
Matrix ans,pre;
if(n==1) return ans;
m=n/2;
pre=Sum(a,m);
ans=Add(pre,mul(pre,Q_pow(a,m)));
if(n&1)
ans=Add(ans,Q_pow(a,n));
return ans;
}
ll Quick_pow(ll x,ll n)
{
ll res=1;
while(n)
{
if(n&1)
res=(res*x)%MOD;
x=(x*x)%MOD;
n >>= 1;
}
return res;
}
int main()
{
ll a,b,n;
while(~scanf("%lld %lld %lld",&a,&b,&n))
{
Matrix ans;
ans.iinit();
if(n==0)
printf("%lld\n",a);
// else if(n==1)
// printf("%lld\n",b);
else
{
ans=Q_pow(ans,n-1);
ll bx=ans.arr[0][0]; //fib(n)
ll ay=ans.arr[1][0];// fib(n-1)
ll res=0;
res= ((Quick_pow(b,bx))*(Quick_pow(a,ay)))%MOD;
printf("%lld\n",res%MOD);
}
}
}