UVa 11582 巨大斐波那契数列 (预处理 + 快速幂)



【题意】


题意很好 理解,  求 f(a^b) %n 为多少;

通过 列出前几项可以发现,  是有规律的  (废话  都  20位了  这么大的数 没规律才怪,  )

超过18位  用 unsigned long long   输入 输出 用 %llu


可以发现  当 出现  F[I-1] =F[1]  F[I]=F[2]  时 是 有周期的,  周期在  n^2 内 一定能找到


但是  很容易超时,

可以提前打表预处理


【代码实现】


//#include <bits/stdc++.h>
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <cstring>
#include <string>
#include <queue>
#include <deque>
#include <stack>
#include <stdlib.h>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define FIN      freopen("input.txt","r",stdin)
#define FOUT     freopen("output.txt","w",stdout)
#define S1(n)    scanf("%d",&n)
#define SL1(n)   scanf("%I64d",&n)
#define S2(n,m)  scanf("%d%d",&n,&m)
#define SL2(n,m)  scanf("%I64d%I64d",&n,&m)
#define Pr(n)     printf("%d\n",n)
#define lson rt << 1, l, mid
#define rson rt << 1|1, mid + 1, r

using namespace std;
typedef unsigned long long ll;
const double PI=acos(-1);
const int INF=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e5+5;
const int MAXN=50005;
const int mod=1e9+7;
int dir[5][2]={0,1,0,-1,1,0,-1,0};



ll f[1005][maxn];
ll go[maxn];
ll a,b,n;
ll qpow(ll x,ll y,ll MOD){ll res=1;for(;y;y>>=1){if(y&1)res=(res*x)%MOD;x=(x*x)%MOD;}return res;}
void init()
{
    for(int i=2;i<=1000;i++)
    {
        f[i][0]=0,f[i][1]=1,f[i][2]=1;
        for(int j=3;;j++)
        {
            f[i][j]=(f[i][j-1]%i+f[i][j-2]%i)%i;
            if(f[i][j]==f[i][1]&&f[i][j-1]==f[i][0])
            {
                go[i]=j-1;
                break;
            }

        }
    }
}
int main()
{
    init();
    int T;
    cin>>T;
    while(T--)
    {
        scanf("%llu%llu%llu",&a,&b,&n);
        if(n==1|| !a)
        {
            printf("0\n");
            continue;
        }
        //printf("%llu %llu \n",a%go[n],b);
        ll t=qpow(a%go[n],b,go[n]);
        printf("%llu\n",f[n][t%go[n]]);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
斐波那契数列矩阵快速幂实现方式如下所示: 首先,我们定义一个2阶矩阵: \[ M = \begin{bmatrix} 1\enspace 1\\ 1\enspace 0 \end{bmatrix} \] 然后,根据斐波那契数列的递推公式\[ F_n = F_{n-1} + F_{n-2} \],我们可以将这个公式抽象成矩阵运算的形式: \[ \begin{bmatrix} F_{n} \\ F_{n-1} \end{bmatrix} = M^{n-1} \cdot \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} \] 其中,\[ F_1 \]和\[ F_0 \]分别表示斐波那契数列的初始值。 通过快速幂运算的思想,我们可以将指数为正整数的幂运算复杂度从\[ O(n) \]降低到\[ O(\log_2 n) \],而且矩阵乘法运算也符合结合律,因此可以使用矩阵快速幂来计算斐波那契数列。 代码实现如下: ```python import numpy as np def fibonacci_matrix_power(n, f1, f0): M = np.array([[1, 1], [1, 0]]) # 定义2阶矩阵M result = np.array([[f1], [f0]]) # 初始值矩阵 power = np.eye(2, dtype=int) # 幂运算的初始值为单位矩阵 while n > 0: if n % 2 == 1: power = np.dot(power, M) # 如果n是奇数,将M乘到结果矩阵上 M = np.dot(M, M) # 将M自乘,n每次右移一位 n //= 2 result = np.dot(power, result) # 最终的结果矩阵 return result # 返回斐波那契数列的第n项 # 测试示例 n = 10 f1 = 1 f0 = 0 fib_n = fibonacci_matrix_power(n, f1, f0) print(fib_n) ``` 这段代码通过矩阵快速幂的方式计算斐波那契数列的第n项,其中参数n为要计算的项数,f1和f0分别为斐波那契数列的初始值。运行结果为斐波那契数列的第n项的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值