qwq我大概又是机房最后一个学主席树的了吧
其实之前一直都在讲···只是没做题
做了几道以后发现都是一个套路qwq关键就是能不能看出来要用主席树
主要可以解决:
静态/动态区间第k大(树上也可以)
一些有关区间的带某些限制的询问(如出现次数等)
先把模板粘上来:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=200005+200000*18;
int n,m,a[maxn],root[maxn],tot;
int ls[maxn],rs[maxn],sum[maxn],b[maxn],p[maxn];
inline void build(int &k,int L,int R){
k=++tot;
if(L<R){
int mid=(L+R)>>1;
build(ls[k],L,mid); build(rs[k],mid+1,R);
return;
}
}
inline void update(int &k,int pre,int L,int R,int c){
k=++tot;
ls[k]=ls[pre],rs[k]=rs[pre],sum[k]=sum[pre]+1;
if(L<R){
int mid=(L+R)>>1;
if(c<=mid) update(ls[k],ls[pre],L,mid,c);
else update(rs[k],rs[pre],mid+1,R,c);
}
}
inline int query(int u,int v,int L,int R,int k){
if(L==R) return L;
int x=sum[ls[v]]-sum[ls[u]];
if(x>=k) return query(ls[u],ls[v],L,(L+R)>>1,k);
else return query(rs[u],rs[v],((L+R)>>1)+1,R,k-x);
}
inline int rd(){
int x=0,f=1;char c=' ';
while(c<'0' || c>'9') {if(c=='-')f=-1;c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*f;
}
int main(){
n=rd(); m=rd();
for(int i=1;i<=n;i++) a[i]=rd(),b[i]=a[i];
sort(a+1,a+1+n);
int cnt=unique(a+1,a+n+1)-a-1;
build(root[0],1,cnt);
for(int i=1;i<=n;i++){
b[i]=lower_bound(a+1,a+cnt+1,b[i])-a;
update(root[i],root[i-1],1,cnt,b[i]);
}
while(m--){
int l=rd(),r=rd(),k=rd();
printf("%d\n",a[query(root[l-1],root[r],1,cnt,k)]);
}
return 0;
}
然后是一些比较裸的题:
树上的路径也可以看做区间,每个节点的前一个版本是父亲节点,然后在query的时候稍作修改:
sum[x]+sum[y]-sum[lca]-sum[fa[lca]]
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 100005
#define M 2000005
using namespace std;
int n,m,cnt,head[N],a[N],b[N],num,dep[N],f[N][20];
int root[N],sum[M],ls[M],rs[M],tot;
inline int rd(){
int x=0,f=1;char c=' ';
while(c<'0' || c>'9') {if(c=='-')f=-1;c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*f;
}
struct EDGE{
int to,nxt;
}edge[N<<1];
inline void add(int x,int y){
edge[++cnt].nxt=head[x]; edge[cnt].to=y; head[x]=cnt;
}
inline int LCA(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
for(int i=17;i>=0;i--)
if(dep[f[x][i]]>=dep[y]) x=f[x][i];
if(x==y) return x;
for(int i=17;i>=0;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
inline void build(int &k,int L,int R){
k=++tot;
if(L<R){
int mid=(L+R)>>1;
build(ls[k],L,mid); build(rs[k],mid+1,R);
return;
}
}
inline void update(int &k,int pre,int L,int R,int p){
k=++tot;
ls[k]=ls[pre],rs[k]=rs[pre],sum[k]=sum[pre]+1;
if(L<R){
int mid=(L+R)>>1;
if(p<=mid) update(ls[k],ls[pre],L,mid,p);
else update(rs[k],rs[pre],mid+1,R,p);
} return;
}
inline int query(int u,int v,int lca,int fa,int L,int R,int k){
if(L==R) return L;
int tmp=sum[ls[v]]+sum[ls[u]]-sum[ls[lca]]-sum[ls[fa]];
int mid=(L+R)>>1;
if(tmp>=k) return query(ls[u],ls[v],ls[lca],ls[fa],L,mid,k);
else return query(rs[u],rs[v],rs[lca],rs[fa],mid+1,R,k-tmp);
}
inline void dfs(int u,int fa){
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to; if(v==fa) continue;
dep[v]=dep[u]+1; f[v][0]=u;
a[v]=lower_bound(b+1,b+num+1,a[v])-b;
update(root[v],root[u],1,num,a[v]);
for(int j=1;j<=17;j++)
f[v][j]=f[f[v][j-1]][j-1];
dfs(v,u);
} return;
}
int main(){
n=rd(); m=rd();
for(int i=1;i<=n;i++) a[i]=rd(),b[i]=a[i];
sort(b+1,b+n+1);
num=unique(b+1,b+n+1)-b-1;
for(int i=1;i<n;i++){
int x=rd(),y=rd();
add(x,y); add(y,x);
}
add(0,1);
build(root[0],1,num);
dfs(0,0);
while(m--){
int u=rd(),v=rd(),k=rd(),x=LCA(u,v);
int ans=query(root[u],root[v],root[x],root[f[x][0]],1,num,k);
printf("%d\n",b[ans]);
}
return 0;
}
相当于找区间众数,但据说这个没法在nlogn复杂度求解,但是它只让求出现次数>(r-l+1)的
因此每次主席树query的时候找值大于这个值得就行了
找到叶子说明找到了答案,否则返回0
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 500005
#define M 11000000
using namespace std;
int n,m,a[N],root[N],ls[M],rs[M],sum[M],tot;
inline int rd(){
int x=0,f=1;char c=' ';
while(c<'0' || c>'9') {if(c=='-')f=-1;c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*f;
}
inline void build(int &k,int L,int R){
k=++tot;
if(L<R){
int mid=(L+R)>>1;
build(ls[k],L,mid); build(rs[k],mid+1,R);
return;
}
}
inline void update(int &k,int pre,int L,int R,int p){
k=++tot;
ls[k]=ls[pre],rs[k]=rs[pre],sum[k]=sum[pre]+1;
if(L<R){
int mid=(L+R)>>1;
if(p<=mid) update(ls[k],ls[pre],L,mid,p);
else update(rs[k],rs[pre],mid+1,R,p);
} return;
}
inline int query(int u,int v,int L,int R,int k){
if(L==R) return L;
int x=sum[ls[v]]-sum[ls[u]],y=sum[rs[v]]-sum[rs[u]];
int mid=(L+R)>>1;
if(x>k) return query(ls[u],ls[v],L,mid,k);
else if(y>k) return query(rs[u],rs[v],mid+1,R,k);
else return 0;
}
int main(){
n=rd(); m=rd();
for(int i=1;i<=n;i++) a[i]=rd();
build(root[0],1,n);
for(int i=1;i<=n;i++)
update(root[i],root[i-1],1,n,a[i]);
while(m--){
int l=rd(),r=rd();
int ans=query(root[l-1],root[r],1,n,(r-l+1)/2);
printf("%d\n",ans);
}
return 0;
}
让区间中位数最大,套路地想二分答案去做
把小于mid的设成-1,大于等于的设成1,然后找最大区间和看是否>=0
但是这样做复杂度爆炸,考虑每次二分改变的1的个数总共不会多于n个
所以可以将数值排序后建主席树,然后判断时求区间max
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 20005
#define M 400005
#define LL long long
using namespace std;
int n,m,num,root[M],ls[M],rs[M],sum[M],lmx[M],rmx[M],tot;
int a[N],ans,q[5];
pair<int,int> b[N];
inline int rd(){
int x=0,f=1;char c=' ';
while(c<'0' || c>'9') {if(c=='-')f=-1;c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*f;
}
inline void pushup(int x){
int lson=ls[x],rson=rs[x];
sum[x]=sum[lson]+sum[rson];
// lmx[x]=max(lmx[x],max(lmx[lson],sum[lson]+lmx[rson]));
// rmx[x]=max(rmx[x],max(rmx[rson],sum[rson]+rmx[lson]));不能这样写qwq
lmx[x]=max(lmx[lson],sum[lson]+lmx[rson]);
rmx[x]=max(rmx[rson],sum[rson]+rmx[lson]);
}
inline void build(int &k,int L,int R){
k=++tot;
if(L==R){
sum[k]=lmx[k]=rmx[k]=1;
return;
}
int mid=(L+R)>>1;
build(ls[k],L,mid); build(rs[k],mid+1,R);
pushup(k);
}
inline void update(int &k,int pre,int L,int R,int p,int val){
k=++tot;
ls[k]=ls[pre],rs[k]=rs[pre];
if(L==R) {
sum[k]=lmx[k]=rmx[k]=val;
return;
}
int mid=(L+R)>>1;
if(p<=mid) update(ls[k],ls[pre],L,mid,p,val);
else update(rs[k],rs[pre],mid+1,R,p,val);
pushup(k); return;
}
inline int query_all(int u,int L,int R,int l,int r){
if(l==L && r==R) return sum[u];
int mid=(L+R)>>1;
if(r<=mid) return query_all(ls[u],L,mid,l,r);
else if(l>mid) return query_all(rs[u],mid+1,R,l,r);
else return query_all(ls[u],L,mid,l,mid)+query_all(rs[u],mid+1,R,mid+1,r);
}
inline int query_left(int u,int L,int R,int l,int r){
if(l==L && r==R) return lmx[u];
int mid=(L+R)>>1;
if(r<=mid) return query_left(ls[u],L,mid,l,r);
else if(l>mid) return query_left(rs[u],mid+1,R,l,r);
else return max(query_left(ls[u],L,mid,l,mid),query_all(ls[u],L,mid,l,mid)+query_left(rs[u],mid+1,R,mid+1,r));
}
inline int query_right(int u,int L,int R,int l,int r){
if(l==L && r==R) return rmx[u];
int mid=(L+R)>>1;
if(r<=mid) return query_right(ls[u],L,mid,l,r);
else if(l>mid) return query_right(rs[u],mid+1,R,l,r);
else return max(query_right(rs[u],mid+1,R,mid+1,r),query_all(rs[u],mid+1,R,mid+1,r)+query_right(ls[u],L,mid,l,mid));
}
inline bool check(int k,int a,int b,int c,int d){
int tmp=0;
if(b+1<c) tmp+=query_all(root[k],0,n-1,b+1,c-1);
tmp+=query_left(root[k],0,n-1,c,d);
tmp+=query_right(root[k],0,n-1,a,b);
return tmp>=0;
}
int main(){
n=rd();
for(int i=0;i<n;i++){
a[i]=rd();
b[i]=make_pair(a[i],i);
}
sort(b,b+n);
build(root[0],0,n-1);
for(int i=1;i<n;i++)
update(root[i],root[i-1],0,n-1,b[i-1].second,-1);
m=rd();
while(m--){
for(int i=1;i<=4;i++) q[i]=rd(),q[i]=(q[i]+ans)%n;
sort(q+1,q+5);
int ll=0,rr=n-1,res;
while(ll<=rr){
int mid=(rr+ll)>>1;
if(check(mid,q[1],q[2],q[3],q[4])) ll=mid+1,res=mid;
else rr=mid-1;
}
printf("%d\n",ans=b[res].first);
}
return 0;
}