树形DP--bzoj5072小 A 的树

是一个 P D F PDF PDF形式的···所以直接粘过来题面了
P r o b l e m S t a t e m e n t Problem Statement ProblemStatement
小 A 成为了一个园艺家!他有一棵 n 个节点的树(如果你不知道树是什么,请 看 Hint 部分)。他不小心打翻了墨水瓶,使得树的一些节点被染黑了。小 A 发 现这棵染黑了的树很漂亮,于是想从树中取出一个 x 个点的联通子图,使得这 些点中恰有 y 个黑点,他想知道他的愿望能否实现。可是他太小,不会算,请 你帮帮他。
I n p u t Input Input
读入数据,第一行一个正整数 T 表示数据组数。 对于每一组数据,第一行有两个用空格隔开的正整数,分别是 n 和 q,表示树 的节点数和询问次数。 接下来 n-1 行,每行两个用空格隔开的正整数 和 ,表示 和 间有一条边 相连。
接下来一行有 n 个用空格隔开的整数 ,其中若 ,则表示第 i
个点为白色,否则为黑色。 接下来 q 行,每行两个用空格隔开的整数 和 ,意义如 Problem Statement 中描述的 x 和 y。
O u t p u t Output Output
输出到文件
对于每一组数据,输出 q 行,每行为“YES”或者“NO”(不含双引号),表示 对于给定的 和 ,能否满足小 A 的要求。 每相邻两组数据的输出之间空一行。

solution:
暴力的做法可以设 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示 i i i为根的子树, j j j个黑点, k k k个点的子图是否存在,但是这样设太浪费了,可以观察出它有一个性质:相同数量黑点的子图大小是一个连续的区间,所以就可以设 f [ i ] [ j ] f[i][j] f[i][j]表示 i i i为根的子树,有 j j j个黑点的最大子图大小, g [ i ] [ j ] g[i][j] g[i][j]表示 i i i为根的子树,有 j j j个黑点的最小子图大小,用树形背包算出这个连续区间的最大最小值, O ( 1 ) O(1) O(1)查询就好了

这题有点卡常···一开始直接加上 s i z [ v ] siz[v] siz[v]以后再背包就 T T T
还有之前 w a wa wa了两次是因为背包的时候直接用 f 、 g f、g fg数组更新了
应该先 c o p y copy copy一份更新完再 c o p y copy copy回去

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 5002
#define inf 0x3f3f3f3f
using namespace std;
int T,n,m,f[N][N],g[N][N],cnt,head[N],b[N],siz[N],ff[N],gg[N];
//f最大 g最小
inline int rd(){
    int x=0,f=1;char c=' ';
    while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
    while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
    return x*f; 
}
 
struct EDGE{
    int to,nxt;
}edge[N<<1];
inline void add(int x,int y){
    edge[++cnt].to=y; edge[cnt].nxt=head[x]; head[x]=cnt;
}
 
inline void init(){
    cnt=0;memset(head,0,sizeof head);
    memset(f,0xcf,sizeof f); memset(g,0x3f,sizeof g);
}
inline int min(int x,int y){return x<y?x:y;}
inline int max(int x,int y){return x>y?x:y;}
 
void DP(int u,int fa){
	siz[u]=1;
    if(b[u]) f[u][1]=1,g[u][1]=1;
    else f[u][0]=1,g[u][0]=1;
    for(int i=head[u];i;i=edge[i].nxt){
        int v=edge[i].to; if(v==fa) continue;
        DP(v,u);//要先copy一下,防止重复更新 
        memcpy(ff,f[u],sizeof f[u]); memcpy(gg,g[u],sizeof g[u]);
        for(int j=siz[u];j>=b[u];j--)
            for(int k=siz[v];k>=b[v];k--){
            	ff[j+k]=max(ff[j+k],f[u][j]+f[v][k]),
               	gg[j+k]=min(gg[j+k],g[u][j]+g[v][k]);
			}
		siz[u]+=siz[v];
		for(int j=b[u];j<=siz[u];j++)
			f[u][j]=ff[j],g[u][j]=gg[j];
    }
    for(int i=0;i<=siz[u];i++)
    	f[0][i]=max(f[0][i],f[u][i]),g[0][i]=min(g[0][i],g[u][i]);
    return;
}
 
int main(){
    T=rd();
    while(T--){
        n=rd(); m=rd(); init();
        for(int i=1;i<n;i++){
            int x=rd(),y=rd();
            add(x,y); add(y,x);
        }
        for(int i=1;i<=n;i++) b[i]=rd();
        DP(1,0);
        while(m--){
            int x=rd(),y=rd();
            if(x<=f[0][y] && x>=g[0][y]) puts("YES");
            else puts("NO");
        } printf("\n");
    }
    return 0;
} 
/*
1 
9 4 
4 1 
1 5 
1 2 
3 2 
3 6 
6 7 
6 8 
9 6 
0 1 0 1 0 0 1 0 1 
3 2 
7 3 
4 0 
9 5
*/
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值