高中数学题 推式子+高精度--kyle

题目:
一个三角形,每条 边的长度都是1到N中的正整数,这三条边能组成多少个不同的三角形呢
n ≤ 1 0 9 n\le 10^9 n109

solution:
啊这就是个妥妥的高中数学题,涉及到数列,几何等知识
f [ n ] f[n] f[n]为答案, f [ n ] = f [ n − 1 ] + g [ n ] f[n]=f[n-1]+g[n] f[n]=f[n1]+g[n]
g [ n ] g[n] g[n]就是至少一条边是 n n n的时候的合法方案数
然后设 h [ i , n ] h[i,n] h[i,n]表示在 g [ n ] g[n] g[n]的条件下另一条边是 i i i的第三条边的个数
分类讨论若 i ≤ ( n + 1 ) / 2 i \le (n+1)/2 i(n+1)/2那么 h [ i ] = i h[i]=i h[i]=i
否则 h [ i ] = n − i + 1 h[i]=n-i+1 h[i]=ni+1

然后就是推式子,几个小 t r i c k trick trick都是高中数列知识
最后的答案就是,设 k = ( n + 1 ) / 2 k=(n+1)/2 k=(n+1)/2
n n n为偶数, a n s = k × ( k + 1 ) × ( 4 × k + 5 ) ans=k\times (k+1)\times (4\times k+5) ans=k×(k+1)×(4×k+5)
n n n为奇数, a n s = k × ( k + 1 ) × ( 4 × k − 1 ) ans=k\times (k+1)\times (4\times k-1) ans=k×(k+1)×(4×k1)

还有注意到这是 n 3 n^3 n3级别的,要用高精度!!!
顺便打了打高精度板子,虽然不怎么优美,但加减乘除都有了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define LL long long
using namespace std;
int n;

struct High_precision{
	int a[100],len;
	High_precision(){memset(a,0,sizeof a);len=0;}
	void clear(){
		while(!a[len] && len>1) len--;
	}
	High_precision operator +(const High_precision &x) const{
		High_precision ret;
		ret.len=max(len,x.len);
		for(int i=1;i<=ret.len;i++)
			ret.a[i]=a[i]+x.a[i];
		for(int i=1;i<=ret.len;i++)
			if(ret.a[i]>9) ret.a[i]-=10,ret.a[i+1]++;
		while(ret.a[ret.len+1]) ret.len++; 
		ret.clear(); return ret;
	}
	High_precision operator -(const High_precision &x) const{
		High_precision ret;
		ret.len=len;
		for(int i=len;i;i--)
			if(i<=x.len) ret.a[i]=a[i]-x.a[i];
			else ret.a[i]=a[i]; 
		for(int i=1;i<=ret.len;i++)
			if(ret.a[i]<0) ret.a[i]+=10,ret.a[i+1]--;
		ret.clear(); return ret;
	}
	High_precision operator *(const High_precision &x) const{
		High_precision ret;
		ret.len=len+x.len-1;
		for(int i=1;i<=len;i++)
			for(int j=1;j<=x.len;j++)
				ret.a[i+j-1]+=a[i]*x.a[j];
		for(int i=1;i<=ret.len;i++)
			if(ret.a[i]>9) 
				ret.a[i+1]+=ret.a[i]/10,ret.a[i]%=10;
		while(ret.a[ret.len+1]) ret.len++;
		ret.clear(); return ret;
	}
	High_precision operator /(const int &x) const{
		High_precision ret;
		ret.len=len; int y=0;
		for(int i=len;i;i--){
			ret.a[i]=(y*10+a[i])/x;
			y=(y*10+a[i])%x;
		}
		ret.clear();
		if(ret.len==0) ret.len=1,ret.a[1]=0;
		return ret;
	}
	void print(){
		for(int i=len;i;i--) printf("%d",a[i]);puts("");
	}
}f,g;

int main(){
	scanf("%d",&n);
	if(n==1) return puts("1"),0;
	if(n==0) return puts("0"),0;
	LL k=(n+1)>>1;
	LL tmp=k*(k+1);
	while(tmp){
		f.len++; f.a[f.len]=tmp%10; tmp/=10;
	}
	if(n&1) tmp=k*4-1;
	else tmp=4*k+5;
	while(tmp){
		g.len++; g.a[g.len]=tmp%10; tmp/=10;
	}
	f=f*g; f=f/6;
	f.print();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值