【模板】分治FFT

5 篇文章 0 订阅

luogu4721一道模板题
前置知识:FFT NTT c d q cdq cdq分治(虽然本人觉得和 c d q cdq cdq没啥关系,应该只用了分治思想

用来解决这样的式子:
f ( i ) = ∑ j = 1 i ( f ( i − j ) × g ( j ) ) f(i)=\sum_{j=1}^i(f(i-j)\times g(j)) f(i)=j=1i(f(ij)×g(j))
可以看到因为 f f f数组是要求出来的,所以不能直接用 F F T FFT FFT或者 N T T NTT NTT,暴力是 n 2 n^2 n2的,如果单用 F F T FFT FFT n 2 l o g n n^2logn n2logn的,还没有暴力优秀。

于是就有了分治 F F T FFT FFT
如果已经知道了 f ( l ) f(l) f(l)~ f ( m i d ) f(mid) f(mid),那么对于后半部分的贡献是:已知 f ( x ) f(x) f(x),则对 f ( i ) f(i) f(i) f ( i − j ) × g ( j )   [ i − j = x ] f(i-j)\times g(j)\ [i-j=x] f(ij)×g(j) [ij=x]的贡献,所以可以进行构造:
A ( i ) = f ( i + l )   i ∈ [ 0 , m i d − l ] , B ( i ) = g ( i + 1 )   i ∈ [ 0 , r − l − 1 ] A(i)=f(i+l)\ i\in[0,mid-l],B(i)=g(i+1)\ i\in[0,r-l-1] A(i)=f(i+l) i[0,midl],B(i)=g(i+1) i[0,rl1]
然后进行 N T T NTT NTT,再把 f ( m i d + 1 ) f(mid+1) f(mid+1)~ f ( r ) f(r) f(r)的贡献加上,对 f ( i ) f(i) f(i)的贡献就是 A ( i − l − 1 ) A(i-l-1) A(il1)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define maxn 400005
#define LL long long
using namespace std;
const int mod=998244353;

inline int rd(){
	int x=0,f=1;char c=' ';
	while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
	while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
	return x*f; 
}

int n,limit,lim,f[maxn],g[maxn],a[maxn],b[maxn],rev[maxn];

inline int qpow(int x,int k){
	int ret=1;
	while(k){
		if(k&1) ret=1LL*ret*x%mod;
		x=1LL*x*x%mod; k>>=1;
	} return ret%mod; 
}

inline void NTT(int *F,int type){
	for(int i=0;i<limit;i++)
		if(i<rev[i]) swap(F[i],F[rev[i]]);
	for(int mid=1;mid<limit;mid<<=1){
		int Wn=qpow(3,type==1?(mod-1)/(mid<<1):(mod-1-(mod-1)/(mid<<1)));
		for(int r=mid<<1,j=0;j<limit;j+=r){
			int w=1;
			for(int k=0;k<mid;k++,w=1LL*w*Wn%mod){
				int x=F[j+k],y=1LL*w*F[j+mid+k]%mod;
				F[j+k]=(x+y)%mod,F[j+mid+k]=(x-y+mod)%mod;
			} 
		}
	}
	if(type==-1){
		int inv=qpow(limit,mod-2);
		for(int i=0;i<limit;i++) F[i]=1LL*F[i]*inv%mod;
	}
}

inline void work(int *a,int *b){
	NTT(a,1); NTT(b,1);
	for(int i=0;i<limit;i++) a[i]=1LL*a[i]*b[i]%mod;
	NTT(a,-1);
}

void cdqFFT(int l,int r){
	if(l==r) return;
	int mid=(l+r)>>1,len=r-l-1;
	cdqFFT(l,mid);
	limit=1,lim=0;
	while(limit<=len) limit<<=1,++lim;
	for(int i=0;i<limit;i++)
		rev[i]=(rev[i>>1]>>1)|((i&1)<<(lim-1)),a[i]=b[i]=0;
	for(int i=l;i<=mid;i++) a[i-l]=f[i];
	for(int i=1;i<=r-l;i++) b[i-1]=g[i];
	work(a,b);
	for(int i=mid+1;i<=r;i++) f[i]=(f[i]+a[i-l-1]%mod)%mod;
	cdqFFT(mid+1,r);
}

int main(){
	n=rd(); f[0]=1;
	for(int i=1;i<n;i++) g[i]=rd();
	cdqFFT(0,n-1);
	for(int i=0;i<n;i++) printf("%d ",f[i]);
	return 0;
}

话说还有更优的算法那就是多项式求逆不过现在窝还没学等学了再说 q w q qwq qwq

( u p d : 原 来 脑 子 一 热 写 成 了 矩 阵 求 逆 小 伙 伴 们 千 万 别 被 误 导 了 啊 q w q (upd:原来脑子一热写成了矩阵求逆小伙伴们千万别被误导了啊qwq (upd:qwq
以及现在学了多项式求逆了但分治FFT 就不错啊

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值