动态DP(学习笔记)

一道模板题

动态 d p dp dp是猫学长发明的用来解决树上带修DP的问题的算法。

好像多数是求树上最大权独立集?
树上最大权独立集我们可以用树形 d p O ( n ) dpO(n) dpO(n)地求出来,设 f [ u ] [ 0 / 1 ] f[u][0/1] f[u][0/1]表示 u u u为根的子树 u u u选或不选的最优方案,可以列出转移式:
f [ u ] [ 0 ] + = m a x ( f [ v ] [ 1 ] , f [ v ] [ 0 ] ) f[u][0]+=max(f[v][1],f[v][0]) f[u][0]+=max(f[v][1],f[v][0])
f [ u ] [ 1 ] + = f [ v ] [ 0 ] f[u][1]+=f[v][0] f[u][1]+=f[v][0]

如果带修改该如何做呢,这个时候就要用树剖+线段树+矩阵来解决了。

树剖+线段树是常用的解决树上问题的优秀算法,想想重链一定是一个区间,就可以用线段树来维护,那么每个节点只需要维护其他轻儿子,可以把上面的转移式改一改:
f [ u ] [ 0 ] = ∑ v ∈ l i g h t s o n ( u ) m a x ( f [ v ] [ 1 ] , f [ v ] [ 0 ] ) f[u][0]=\sum_{v\in lightson(u)}max(f[v][1],f[v][0]) f[u][0]=vlightson(u)max(f[v][1],f[v][0])
f [ u ] [ 1 ] = a [ u ] + ∑ v ∈ l i g h t s o n ( u ) f [ v ] [ 0 ] f[u][1]=a[u]+\sum_{v\in lightson(u)}f[v][0] f[u][1]=a[u]+vlightson(u)f[v][0]
把新的 f f f记为 g g g
这样就实现了维护一棵树到维护一个序列的转变

这个转移怎么转化成矩阵的形式?
我们可以改变一下矩阵乘法的运算:

Mat operator *(const Mat &x) const{
		Mat ret;
		for(int i=0;i<2;i++)
			for(int j=0;j<2;j++)
				for(int k=0;k<2;k++)
				ret.g[i][j]=max(ret.g[i][j],g[i][k]+x.g[k][j]);
		return ret;
	}

然后想想矩阵是什么:
[ f i , 0 f i , 1 ] = [ f i − 1 , 0 f i − 1 , 1 ] × [ g i , 0 g i , 0 g i , 1 − ∞ ] \begin{bmatrix}f_{i,0}\\f_{i,1}\end{bmatrix} =\begin{bmatrix}f_{i-1,0}\\f_{i-1,1}\end{bmatrix}\times \begin{bmatrix}g_{i,0}&amp;g_{i,0}\\g_{i,1}&amp;-\infty \end{bmatrix} [fi,0fi,1]=[fi1,0fi1,1]×[gi,0gi,1gi,0]
然后代入矩阵乘法算一算,顿时觉得很有道理啊

于是可以用线段树维护每个区间的矩阵积,查询的时候只需要在线段树上 q u e r y query query就好了

然后修改怎么做呢?可以发现当一个节点的权值改变了,那么它的链顶的节点的 f f f值会改变,再往上,每过一条轻边,它都会影响那个点的 g g g值,在线段树上单点修改就好了,因为轻边是 l o g n logn logn级别的,线段树修改也是 l o g n logn logn级别的,所以修改复杂度是 n l o g 2 n nlog^2n nlog2n的,查询 n l o g n nlogn nlogn,总复杂度 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define LL long long
#define N 100005
#define ls cur<<1
#define rs cur<<1|1
#define inf 0x3f3f3f3f
using namespace std;

inline int rd(){
	int x=0,f=1;char c=' ';
	while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
	while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
	return x*f;
}

int n,m,a[N],cnt,head[N],f[N][2];
int dfn[N],rk[N],dep[N],fa[N],son[N],siz[N],top[N],ed[N],num;

struct EDGE{
	int to,nxt;
}edge[N<<1];
inline void add(int x,int y){
	edge[++cnt].to=y; edge[cnt].nxt=head[x]; head[x]=cnt;
}

void dfs1(int u,int fat){
	siz[u]=1; int maxson=-1;
	for(int i=head[u];i;i=edge[i].nxt){
		int v=edge[i].to; if(v==fat) continue; fa[v]=u;
		dep[v]=dep[u]+1; dfs1(v,u); siz[u]+=siz[v];
		if(siz[v]>maxson) maxson=siz[v],son[u]=v;
	} return;
}

void dfs2(int u,int t){
	top[u]=t; dfn[u]=++num; rk[num]=u; ed[t]=u;
	if(!son[u]) return;
	dfs2(son[u],t);
	for(int i=head[u];i;i=edge[i].nxt){
		int v=edge[i].to;
		if(!dfn[v]) dfs2(v,v);
	} return;
}

struct Mat{
	int g[2][2];
	Mat(){memset(g,0,sizeof g);}
	Mat operator *(const Mat &x) const{
		Mat ret;
		for(int i=0;i<2;i++)
			for(int j=0;j<2;j++)
				for(int k=0;k<2;k++)
				ret.g[i][j]=max(ret.g[i][j],g[i][k]+x.g[k][j]);
		return ret;
	}
}val[N],node[N<<2];

void build(int cur,int L,int R){
	if(L==R){
		int g0=0,g1=a[rk[L]];
		for(int u=rk[L],i=head[u],v;i;i=edge[i].nxt)
			if((v=edge[i].to)!=fa[u] && v!=son[u])
				g0+=max(f[v][0],f[v][1]),g1+=f[v][0];
		node[cur].g[0][0]=node[cur].g[0][1]=g0;
		node[cur].g[1][0]=g1; node[cur].g[1][1]=-inf;
		val[L]=node[cur]; return;
	}
	int mid=(L+R)>>1;
	build(ls,L,mid); build(rs,mid+1,R);
	node[cur]=node[ls]*node[rs];
}

void update(int cur,int L,int R,int p){
	if(L==R) {node[cur]=val[L];return;}
	int mid=(L+R)>>1;
	if(p<=mid) update(ls,L,mid,p);
	else update(rs,mid+1,R,p);
	node[cur]=node[ls]*node[rs];
}

Mat query(int cur,int L,int R,int ql,int qr){
	if(ql<=L && qr>=R) return node[cur];
	int mid=(L+R)>>1;
	if(qr<=mid) return query(ls,L,mid,ql,qr);
	if(ql>mid) return query(rs,mid+1,R,ql,qr);
	return query(ls,L,mid,ql,qr)*query(rs,mid+1,R,ql,qr);
}

inline Mat ask(int u){
	return query(1,1,n,dfn[top[u]],dfn[ed[top[u]]]);
}

inline void change(int u,int x){
	val[dfn[u]].g[1][0]+=x-a[u]; a[u]=x;
	Mat pre,now;
	while(u){
		pre=ask(top[u]);
		update(1,1,n,dfn[u]);
		now=ask(top[u]);
		u=fa[top[u]];
		val[dfn[u]].g[0][0]+=max(now.g[0][0],now.g[1][0])-max(pre.g[0][0],pre.g[1][0]);
		val[dfn[u]].g[0][1]=val[dfn[u]].g[0][0];
		val[dfn[u]].g[1][0]+=now.g[0][0]-pre.g[0][0];
	}
}

void DP(int u,int fat){
	f[u][1]=a[u];
	for(int i=head[u];i;i=edge[i].nxt){
		int v=edge[i].to; if(v==fat) continue;
		DP(v,u);
		f[u][0]+=max(f[v][1],f[v][0]);
		f[u][1]+=f[v][0];
	} return;
}

inline void prework(){
	dfs1(1,0); dfs2(1,1);
	DP(1,0); build(1,1,n);
}

int main(){
	n=rd();m=rd();
	for(int i=1;i<=n;i++) a[i]=rd();
	for(int i=1;i<n;i++){
		int x=rd(),y=rd();
		add(x,y); add(y,x);
	}
	prework(); int x,y; Mat ans;
	while(m--){
		x=rd(),y=rd();
		change(x,y);
		ans=ask(1);
		printf("%d\n",max(ans.g[0][0],ans.g[1][0]));
	}
	return 0;
}
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值