基于 Quivr 搭建个人专属知识库

上一篇里,树先生教大家利用 ChatGLM-6B + langchain 实现个人专属知识库,实际运行下来,发现2个问题:

1、购买的 16G 显存的 GPU 云服务,在 FP16 精度下,多轮对话到第二轮,显存就爆了,无奈只能上 INT4 量化;

2、GPU 云服务也是一笔不小的开销啊,普通个人玩家也耗费不起~

那么有没有其他解决方案呢?

今天,树先生教大家一种使用远端模型(OpenAI)构建个人知识库的解决方案—— Quivr。

Quivr 介绍

Quivr 是一款使用生成 AI 技术来存储和检索非结构化信息的“第二大脑”,可以将其视为 Obsidian 的增强版,并且具备更强的人工智能功能。

Quivr 可以处理几乎所有类型的数据,包括文本、图像、代码片段等。它采用先进的人工智能技术来帮助您生成和检索信息。同时,它还专注于速度和效率,确保您可以快速访问数据。您的数据安全由您掌控,Quivr 支持多个文件格式,包括文本、Markdown、PDF、PowerPoint、Excel、Word、音频、视频等。

从介绍上来看,支持的文件格式还算比较丰富,毕竟自诩为“第二大脑”呢!

再来看一段官方放出的 Demo 视频:

Quivr Demo

看起来还不错,是骡子是马,拉出来溜溜,开干!

实战

Quivr 和我们之前介绍的其他知识库方案一样,本质上都是基于 Prompt 与大模型交互来的,Quivr 用到的主要技术有:

  • LLM:GPT3.5 / GPT 4

  • Embedding:OpenAI embedding

  • 向量知识库:Supabase

准备工作

  • 海外节点云服务(项目需要与
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员树先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值