向量数据库与传统数据库是为解决不同数据类型和查询需求而设计的两类数据库,核心差异体现在数据存储形式、查询逻辑、适用场景等维度。以下从6个关键方面展开对比,并结合具体案例帮助理解二者的定位差异。
一、核心定义与设计目标
其本质定位:
- 传统数据库:以“结构化数据”为核心,旨在解决数据的高效存储、事务一致性(如转账、订单提交)和精确查询(如“查询年龄=30且城市=北京的用户”),典型代表如MySQL、PostgreSQL、Oracle。
- 向量数据库:以“向量数据”为核心,旨在解决非结构化数据(如图片、文本、音频)的“相似性匹配”(如“找到与这张猫图最像的10张图片”“推荐与当前文章主题相似的内容”),典型代表如Pinecone、Milvus、Chroma。
二、6大核心维度对比
| 对比维度 | 传统数据库 | 向量数据库 |
|---|---|---|
| 1. 存储的数据类型 | 以结构化数据为主(如表格中的“姓名、年龄、订单号”),也支持半结构化数据(如JSON),但本质是“键值对/行列结构”。 | 以向量数据为主(将非结构化数据通过AI模型转化为“数值数组”,如文本→Word2Vec向量、图片→ResNet向量)。 |
| 2. 数据存储结构 | 基于“关系模型”(表、行、列)或“文档模型”(如MongoDB的文档),依赖索引(如B+树、哈希索引)优化精确查询。 | 基于“向量索引”(如IVF、HNSW、FAISS),核心是将高 |

最低0.47元/天 解锁文章
1079

被折叠的 条评论
为什么被折叠?



