第一章、Docker复杂安装详说
安装mysql主从复制
主从复制原理
MySQL主从复制是一种常见的数据库复制技术,用于创建一个主数据库和一个或多个从数据库的副本,以实现数据备份、负载均衡和故障恢复等目的。
以下是MySQL主从复制的基本原理:
- 主数据库(Master):主数据库是整个复制系统的源,它包含了要复制到从数据库的所有数据。主数据库负责记录所有的数据更改,这些更改以二进制日志(binary log)的形式保存。
- 从数据库(Slave):从数据库是主数据库的副本,它通过复制主数据库的数据来保持一致性。从数据库会连接到主数据库,并获取主数据库中的二进制日志事件,然后将这些事件应用到自己的数据中。
主从搭建步骤
1.新建主服务器容器实例
docker run -p 3307:3306 --name mysql-master \
-v /mydata/mysql-master/log:/var/log/mysql \
-v /mydata/mysql-master/data:/var/lib/mysql \
-v /mydata/mysql-master/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7
2.进入/mydata/mysql-master/conf目录下新建my.cnf
cd /mydata/mysql-master/conf
vim my.cnf
[mysqld]
##设置server_id,同一局域网中需要唯
server_id=101
##指定不需要同步的数据库名称
binlog-ignore-db=mysql
##开启二进制日志功能
log-bin=mall-mysql-bin
##设置二进制日志使用内存大小(事务)
binlog_cache_size=1M
##设置使用的二进制日志格式(mixedstatement,row)
binlog_format=mixed
##二进制日志过期清理时间。默认值为0,表示不自动清理。
expire_logs_days=7
##跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。#如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致
slave_skip_errors=1062
3.修改完配置后重启master实例
docker restart mysql-master
4. 进入mysql-master容器
docker exec -it mysql-master /bin/bash
mysql -uroot -proot
5.master容器实例内创建数据同步用户
CREATE USER 'slave'@'%' IDENTIFIED BY '000000';
GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'slave'@'%';
6.新建从服务器容器实例3308
docker run -p 3308:3306 --name mysql-slave \
-v /mydata/mysql-slave/log:/var/log/mysql \
-v /mydata/mysql-slave/data:/var/lib/mysql \
-v /mydata/mysql-slave/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7
7.进入/mydata/mysql-slave/conf目录下新建my.cnf
cd /mydata/mysql-slave/conf
vim my.cnf
[mysqld]
##设置server_id,同一局域网中需要唯一
server_id=102
##指定不需要同步的数据库名称
binlog-ignore-db=mysql
##开启二进制日志功能,以备Slave作为其它数据库实例的Master时使用
log-bin=mall-mysql-slave1-bin
##设置二进制日志使用内存大小(事务)
binlog_cache_size=1M
##设置使用的二进制日志格式(mixed,statement.row)
binlog_format=mixed
##二进制日志过期清理时间。默认值为0,表示不自动清理。
expire_logs_days=7
##跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。
##如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致
8.修改完配置后重启slave实例
docker restart mysql-slave
9.在主数据库中查看主从同步状态
show master status;
10.进入mysql-slave容器
docker exec -it mysql-slave /bin/bash
mysql -uroot -proot
11.在从数据库中配置主从复制
change master to master_host='宿主机ip', master_user='slave', master_password='000000', master_port=3307, master_log_file='mall-mysql-bin.000001', master_log_pos=617, master_connect_retry=30;
主从复制面令参数说明
master_host:主数据库的IP地址;
master_port:主数据库的运行端口;
master_user:在主数据库创建的用于同步数据的用户账号;
master_password:在主数据库创建的用于同步数据的用户密码;
master_log_file:指定从数据库要复制数据的日志文件,通过查看主数据的状态,获取File参数;master_log_pos:指定从数据库从哪个位置开始复制数据,通过查看主数据的状态,获取Position参数;
master_connect_retry:连接失败重试的时间间隔,单位为秒。
12.在从数据库中查看主从同步状态
show slave status \G;
Slave_IO_Running: No
Slave SQL Running: No 没开始
13.在从数据库中开启主从同步
mysal> start slave;
14.查看从数据库状态发现已经同步
Slave_IO_Running: Yes
Slave SQL Running: Yes
15.主从复制测试
主机新建库-使用库-新建表-插入数据:
create database db01;
use db01;
create table t1 (id int,name varchar(20) );
insert into t1 values( 1,'z3') ;
select * from t1;
从机使用库-查看记录:
use db01;
select * from t1;
安装redis集群(大厂面试题第4季-分布式存储案例真题)
cluster(集群)模式-docker版
哈希槽分区进行亿级数据存储
面试题:
1~2亿条数据需要缓存,请问如何设计这个存储案例
回答:单机单台100%不可能,肯定是分布式存储,用redis如何落地?
上述问题阿里P6~P7工程案例和场景设计类必考题目, 一般业界有3种解决方案:
哈希取余分区
2亿条记录就是2亿个k、v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key)%N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
优点:
简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。
缺点:
原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key)/?。此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。
某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。
一致性哈希算法分区
一致性Hash算法背景:一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数就不可以了。
作用:提出一致性Hash解决方案。目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系
3大步骤:
算法构建一致性哈希环:一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0=2^32),这样让它逻辑上形成了一个坏形空间。
它也是按照使用取余的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取余。而一致性Hash算法是对2^32取余,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),哈希环整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、······直到2^32-1,也就是说0点左侧的第一个点代表2^32-1,0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。
服务器IP节点映射:将集群中各个IP节点映射到环上的某一个位置。
将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间就会有这四个节点的位置。
key落到服务器的落键规则:当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
如我们有ObjectA、Object B、Object C、ObjectD四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
优点:
一致性哈希算法的容错性:假设Node C宕机,对象A、B、D不会受到影响,只有C对象被重定位到NodeD。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。
一致性哈希算法的扩展性:数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,不会导致hash取余全部数据重新洗牌。
缺点:一致性哈希算法的数据倾斜问题
Hash环的数据倾斜问题
一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题。
小总结:
为了在节点数目发生改变时尽可能少的迁移数据
将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。
优点:加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
缺点:数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。
哈希槽分区
为了更好的解决一致性哈希算法的数据倾斜问题,于是就有了哈希槽。
哈希槽实质就是一个数组,数组[0,2^14-1]形成hash slot空间。
作用:
解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot)用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。
槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。
哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。
有多少个哈希槽:
一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot=CRC16(key)%16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。
哈希槽计算:
Redis 集群中内置了16384个哈希槽,redis会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在Redis集群中放置一个key-value时,redis 先对key使用crc16算法算出一个结果,然后把结果对16384求余数,这样每个key都会对应一个编号在0-16383之间的哈希槽,也就是映射到某个节点上。
3主3从redis集群扩缩容实验配置步骤
3主3从redis集群配置
关闭防火墙+启动docker后台服务
systemctl start docker
新建6个docker容器实例:
docker run -d --name redis-node-1 --net host --privileged=true -v /data/redis/share/redis-node-1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381
docker run -d --name redis-node-2 --net host --privileged=true -v /data/redis/share/redis-node-2:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6382
docker run -d --name redis-node-3 --net host --privileged=true -v /data/redis/share/redis-node-3:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6383
docker run -d --name redis-node-4 --net host --privileged=true -v /data/redis/share/redis-node-4:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6384
docker run -d --name redis-node-5 --net host --privileged=true -v /data/redis/share/redis-node-5:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6385
docker run -d --name redis-node-6 --net host --privileged=true -v /data/redis/share/redis-node-6:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6386
命令分步解释:
docker run ——创建并运行docker容器实例
--name redis-node-6 ——容器名字
--net host ——使用宿主机的IP和端口,默认
--privileged=true ——获取宿主机root用户权限
-v /data/redis/share/redis-node-6:/data ——容器卷, 宿主机地址:docker内部地址
redis:6.0.8 ——redis镜像和版本号
--cluster-enabled yes ——开启redis集群
--appendonly yes ——开启持久化
--port 6386 redis ——端口号
进入容器redis-node-1并为6台机器构建集群关系:
docker exec -it redis-node-1 /bin/bash
注意,进入docker容器后才能执行一下命令,且注意自己的真实IP地址
redis-cli --cluster create 192.168.48.131:6381 192.168.48.131:6382 192.168.48.131:6383 192.168.48.131:6384 192.168.48.131:6385 192.168.48.131:6386 --cluster-replicas 1
链接进入6381作为切入点,查看集群状态:
链接进入6381作为切入点,查看节点状态:
redis-cli -p 6381
cluster info:
cluster_state:ok
cluster_slots_assigned:16384
cluster_slots_ok:16384
cluster_slots_pfail:0
cluster_slots_fail:0
cluster_known_nodes:6
cluster nodes
主从容错切换迁移案例
数据读写存储:
启动6机构成的集群并通过exec进入:
docker exec -it redis-node-1 /bin/bash
redis-cli -p 6381
对6381新增两个key:
127 0.0.1:6381> set k1 v1
error) MOVED 12706 192.168.111.147:6383
127 0.0.1:6381> set k2 v2
OK
防止路由失效加参数-c并新增两个key:
127.0.0.1:6381> quit
root@zzyy:/data# redis-cli -p 6381 -c
127 00 1:6381> set k1 v3
> Redirected to slot [12706] located at 192.168.111.147:6383 OK
192.168.111.147:6383>set k2 v4
> Redirected to slot [ 449] located at 192.168.111.147:6381OK
192.168.111.147:6381>
查看集群信息:
redis-cli --cluster check 192.168.111.147:6381
容错切换迁移:
主6381和从机切换,先停止主机6381:
docker stop redis-node-1
再次查看集群信息:
[root@zzyy ~]# docker exec -it redis-node-2 /bin/bash
root@zzyy:/data# redis-cli -p 6382 -c
127.0.0.1:6382> cluster nodes
6385 master
6381 master,fail
6381宕机了,6385上位成为了新的master。
备注:本次实验6381为主下面挂从6385,每次案例下面挂的从机以实际情况为准,具体是几号机器就是几号
先还原之前的3主3从:
先启6381 一docker start redis-node-1
再停6385 —docker stop redis-node-5
再启6385 一docker start redis-node-5
主从机器分配情况以实际情况为准
查看集群状态:redis-cli --cluster check 自己IP:6381
主从扩容案例
新建6387、6388两个节点+新建后启动+查看是否8节点
docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-7:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6387
docker run -d --name redis-node-8 --net host --privileged=true -v /data/redis/share/redis-node-8:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6388 docker ps
进入6387容器实例内部
docker exec -it redis-node-7 /bin/bash
将新增的6387节点(空槽号)作为master节点加入原集群
redis-cli --cluster add-node 自己实际IP地址:6387 自己实际IP地址:6381
6387就是将要作为master新增节点
6381就是原来集群节点里面的领路人,相当于6387拜拜6381的码头从而找到组织加入集群
rootzzyy:/data#redis-cli --cluster add-node 192.168.48.131:6387 192.168.48.131:6381
Adding node192.168.48.131:6387 to cluster192.168.48.131:6381
PerformingCluster Check (using node 192.168.48.131:6381)
检查集群情况第1次
redis-cli --cluster check 真实ip地址:6381
root@zzyy:/data# redis-cli --cluster check 192.168.48.131:6381
重新分派槽号
命令:redis-cli --cluster reshard IP地址:端口号
redis-cli --cluster reshard 192.168.48.131:6381
M: e4781f644d4a4e44b4d107157b9ba8144631451 192168.111 147:6387 slots: (0 slots) master
How many slots do you want to move( from 1 to 16384)? 4096 (16384/master台数)
What is the receiving node ID? e4781f644d4a4e4d4b4d10715b9ba8144631451
Source node # all
检查集群情况第2次
redis-cli --cluster check 真实ip地址:6381
槽号分派说明:为什么6387是3个新的区间,以前的依旧是连续的区间? 因为重新分配成本太高,所以前3家各自匀出来一部分,从6381/6382/6383三个旧节点分别匀出1364个坑位给新节点6387
为主节点6387分配从节点63887
命令:redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID
redis-cli --cluster add-node 192.168.48.131:6388 192.168.48.131:6387 --cluster-slave --cluster-master-id e4781f644d4a4e4d4b4d107157b9ba8144631451 ----这个是6387的编号,按照自己实际情况
检查集群情况第3次
redis-cli --cluster check 192.168.48.131:6382
主从缩容案例
目的:6387和6388下线
检查集群情况 获得6388的节点ID
redis-cli --cluster check 192.168.48.131:6382
S: 5d149074b7e57b802287d1797a874ed7a1a284a8
192.168.48.148:6388 slots: (0 slots) slave
从集群中将4号从节点6388删除
命令:redis-cli --cluster del-node ip:从机端口 从机6388节点ID
redis-cli --cluster del-node 192.168.48.131:6388 5d149074b7e57b802287d1797a874ed7a1a284a8
redis-cli --cluster check 192.168.48.131:6382
检查一下发现,6388被删除了,只剩下7台机器了。
将6387的槽号清空,重新分配,本例将清出来的槽号都给6381
redis-cli --cluster reshard 192.168.48.131:6381
M: 6753e3bb260fdb7b949al388e1a30152ace37eb5
192.168.48.148:6381
M: e4781f644d4a4e4d4b4d107157b9ba8144631451
192.168.48.148:6387
How many slots do you want to move( from 1 to 16384)? 4096
What is the receiving node ID?
6753e3bb260fdb7b949al388e1a30152ace37eb5 6381的节点id,由它来接手空出来的槽号
Source node #1: e4781f644d4a4e4d4b4d107157b9ba8144631451 6387的节点d,告知删除哪个
Source node #2: done
Doyou want to proceed with the proposed reshard plan (yes/no)?yes
检查集群情况2
redis-cli --cluster check 192.168.48.131:6381
4096个槽位都给6381,它变成了8192个槽位,相当于全部都给6381了,不然要输入3次,这里为了方便选择一锅端
将6387删除
命令:redis-cli --cluster del-node ip:端口 6387节点ID
redis-cli --cluster del-node 192.168.48.131:6387 e4781f644d4a4e4d4b4d107157b9ba8144631451
检查集群情况3
redis-cli --cluster check 192.168.48.131:6381