机器学习 朴素贝叶斯算法

朴素贝叶斯算法

概率基础:

定义:一件事情发生的可能性
联合概率:包含多个条件,且所有条件同时成立。
公式:p(A,B)=p(A)*p(B)

条件概率:就是事件A在另外一个事件B已经发生条件下发生概率。
公式:p(A|B)
特性:P(A1,A2|B)=P(A1|B)P(A2|B)
注意:此条件概率的成立,是由于A1,A2相互独立的结果。
在这里插入图片描述

  1. 女神喜欢的概率:
    4/7
  2. 职业时程序员并且体型匀称的概率:
    p(程序员,匀称)=3/7*4/7=12/49
  3. 在女神喜欢的条件下,职业是程序员的概率:
    1/2
  4. 在女神喜欢的条件下,职业是产品,体重是超重的概率:
    p(产品,超重|喜欢)=(1/2)*(1/4)=1/8

朴素贝叶斯算法:

朴素:条件独立。

公式:在这里插入图片描述

P(科技|词1,词2,词3…)=P(f1,f2,f3|科技)p(科技)/ p(w)

P(娱乐|词1,词2,词3…)=P(f1,f2,f3|娱乐)p(娱乐)/ p(w)
在这里插入图片描述

例:

在这里插入图片描述
现有一篇预测文档:出现了 影院,支付宝,云计算,计算属于科技、娱乐的类别概率?
解答:
属于科技的概率:
P(科技|影院,支付宝,云计算)=P(影院,支付宝,云计算|科技)P(科技)=(8/100)(20/100)(63/100)(30/90)=0.00456109
属于娱乐的概率:
P(娱乐|影院,支付宝,云计算)=P(影院,支付宝,云计算|娱乐)P(娱乐)=(56/121)
(15/121)(0/121)(60/90)=0

注意:属于某个类别为0,合理嘛?当然不合理,解决办法:拉普拉斯平滑系数。

拉普拉斯平滑

公式:
在这里插入图片描述

a为指定的系数一般为1,m为训练文档中统计出的特征词个数。
所以属于娱乐的概率:
P(娱乐|影院,支付宝,云计算)=P(影院,支付宝,云计算|娱乐)P(娱乐)=(56+1/121+14)(15+1/121+14)(0+1/121+14)(60/90)=0.001

sklearn朴素贝叶斯实现API:

sklearn.naive_bayes.MultinomialNB(alpha=1.0)

  • 朴素贝叶斯分类
  • slpha:拉普拉斯平滑系数

算法案例:

  • sklearn20类新闻分类。
  • 20 个新闻组数据集包含20个主题的18000个新闻组帖子。

流程:

  1. 加载20类新闻数据,并进行分析
  2. 生成文章特征词
  3. 朴素贝叶斯estimator流程进行预测

源代码:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB


def naviebayes():
    """
    朴素贝叶斯进行文本分类
    """
    #导入文本
    news=fetch_20newsgroups(subset="all")
    #进行数据分割
    x_train,x_test,y_train,y_test=train_test_split(news.data,news.target,test_size=0.25)
    
    #对数据集进行特征抽取
    tf =TfidfVectorizer()
    
    #以训练集当中的词的列表进行每篇文章重要性统计
    x_train=tf.fit_transform(x_train)
    x_test=tf.transform(x_test)
    
    #进行朴素贝叶斯算法的预测
    mlt=MultinomialNB(alpha=1.0)
    print("预测文章的类别:",x_train)#查看类型
    mlt.fit(x_train,y_train)
    y_predict=mlt.predict(x_test)
    
    # 得出准备率
    print("准确率:",mlt.score(x_test,y_test))
    return None

if __name__=="__main__":
    naviebayes()
    

运行:

在这里插入图片描述

总结:

朴素贝叶斯:文本分类。但是使用神经网络效果要更好一些。

  • 训练集误差大,结果肯定不好。
  • 不需要调参数。

优点:

  • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
  • 分类准确度高,速度快。

缺点:

  • 由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。
  • 训练集当中去进行统计词这些工作,会对结果造成干扰。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎明之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值