大数据概论
.1 大数据概念
主要解决,海量存储和海量数据的分析计算问题。
2 大数据特点
1>Volume(大量)
2>Velocity(高速)
3>Variety(多样)
4>Value(低价值密度)
价值密度的高低与数据总量的大小成反比。
如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。
3 大数据应用场景
- 物流仓库:大数据分析系统助力商家精细化运营、提升销量、节约成本。
- 零售:分析用户消费习惯,为用户购买商品提供方便,从而提升商品销量。
- 旅游:深度结合大数据能力与旅游行业需求,共建旅游产业指挥管理、智慧服务和智慧营销的未来。
- 商品广告推荐:给用户推荐可能喜欢的商品。
- 保险:海量数据挖掘及风险预测,助力保险行业精准营销,提升精细化定价能力。
- 金融:多维度体现用户特征,帮助金融机构推荐优质客户,防范欺诈风险。
- 房产:大数据全面助力房地产行业,打造精准投策与营销,选出更合适的低,建设更合适的楼,卖给更合适的人。
- 人工智能:
4 大数据发展前景
- 党的十八大提出“实施国家大数据战略”,国务院印发《促进大数据发展行动纲要》,大数据技术和应用处于创新突破期,国内市场需求处于爆发期,我国大数据产业面临重要的发展机遇。
- 党的十九大提出“推动互联网、大数据、人工智能和实体经济深度结合。
- 国际数据公司IDC预测,到2020年,企业基于大数据计算分析平台的支出将突破5000亿美元。
- 2017年北京大学、中国人民大学、北京邮电大学等25所高校成功申请开设大数据课程。
- 大数据属于高新技术,大牛少,升值竞争小。
- 在北京大数据开发工程师的平均薪水已经发哦24060元,而且目前还保持抢尽的发展势头。