I love exam

32 篇文章 0 订阅
该博客主要讨论了一个使用动态规划解决的课程选择问题。在给定每门课程的学习天数和得分,以及总的天数限制和允许挂科的门数下,求解能获得的最大分数。博主通过初始化二维和三维数组,然后进行状态转移来实现动态规划求解。最后,博主给出了程序代码并输出了最大分数结果。
摘要由CSDN通过智能技术生成

题目:

题目链接:

题解:

参考:链接:

f [ i ] [ j ] f[i][j] f[i][j] 表示第 i i i 门课程,花费 j j j 天可以得到的最大分数

d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 表示前 i i i 门课,花费 j j j 天, 挂 k k k 门课可以得到的最大分数

记得初始化

转移:

f [ i ] [ z ] < 60 f[i][z]<60 f[i][z]<60

d p [ i ] [ j ] [ k ] = m a x ( d p [ i ] [ j ] [ k ] , d p [ i − 1 ] [ j − z ] [ k − 1 ] + f [ i ] [ z ] ) dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-z][k-1]+f[i][z]) dp[i][j][k]=max(dp[i][j][k],dp[i1][jz][k1]+f[i][z])

f [ i ] [ z ] > = 60 f[i][z]>=60 f[i][z]>=60
d p [ i ] [ j ] [ k ] = m a x ( d p [ i ] [ j ] [ k ] , d p [ i − 1 ] [ j − z ] [ k ] + f [ i ] [ z ] ) dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-z][k]+f[i][z]) dp[i][j][k]=max(dp[i][j][k],dp[i1][jz][k]+f[i][z])

#include <bits/stdc++.h>
using namespace std;
map<string,int> s;
int f[55][550];
int dp[55][550][5];
typedef pair<int,int> pll;
int main()
{
    ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);
    int t;
    cin>>t;
    while(t--)
    {
        s.clear();
        vector<pll> q[55];
        memset(f,-0x3f,sizeof f);
        memset(dp,-0x3f,sizeof dp);
        int n;
        cin>>n;
        for(int i=1;i<=n;i++)
        {
            string a;
            cin>>a;
            s[a]=i;
        }
        int m;
        cin>>m;
        for(int i=1;i<=m;i++)
        {
            string a;
            int x,y;
            cin>>a>>x>>y;
            q[s[a]].push_back({x,y});
        }
        int T,P;
        cin>>T>>P;
        for(int i=1;i<=n;i++) f[i][0]=0;//第i门课,花费j天
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<q[i].size();j++)
            {
                for(int k=T;k>=q[i][j].second;k--)
                {
                    f[i][k]=min(100,max(f[i][k],f[i][k-q[i][j].second]+q[i][j].first));
                }
            }
        }
        dp[0][0][0]=0;
        for(int i=1;i<=n;i++)//第几门课
        {
            for(int j=0;j<=T;j++)//需要几天
            {
                for(int k=0;k<=P;k++)//挂几门课
                {
                    for(int z=0;z<=j;z++)//当前课学几天
                    {
                        if(f[i][z]<60&&k!=0) dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-z][k-1]+f[i][z]);
                        else if(f[i][z]>=60) dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-z][k]+f[i][z]);

                    }
                }
            }
        }
        int ans=-1;
        for(int i=0;i<=P;i++) ans=max(ans,dp[n][T][i]);
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值