力扣第1035题:不相交的线、第1049题:动态规划解最后一块石头的重量(Java)

一、前言

        今天很例外哈,做了两题,是因为我觉得第一题题型前两天遇见过,所以有些熟悉,很快就写出来了,然后就想着多写一题,结果第二题还是挺常规的,那今天就这两题吧,开始。

二、题目描述(1035)

        

 三、题目分析

         这道题乍一看挺吓人的,因为要考虑到图形化的线段相交问题,但是其实却不难,因为只要将dp的前一种情况,最基础的情况考虑清楚了,那么dp后面的公式就很容易得出,那么也就不会错了。

        这个题目很容易看出来,用一个二维数组dp[i][j]储存,它的含义是,nums1的前i个数和nums2的前j个数中最多的不相交线段数。为了防止边界的判断问题,我们将dp的长度设置为

int [][]dp=new int [nums1.length][nums2.length];

        于是得出他的边界条件为,dp[0][0]=dp[0][1]=dp[1][0]=0;之后得出状态转移方程,dp[i][j]等于什么呢?如果nums1的第i个和nums2的第j个相等,那么很明显,dp[i][j]=dp[i-1][j-1]+1

如果不相等,那么dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]),最后我们只需要返回nums1的前nums1.length个数和nums2的前nums2.length个数的不相交线段数,即dp[nums1.length][nums2.length]即可。

四、代码

    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[][]dp=new int [nums1.length+1][nums2.length+1];
        int len1=nums1.length;
        int len2=nums2.length;
        dp[0][0]=0;
        dp[0][1]=0;
        dp[1][0]=0;
        for(int i=1;i<=len1;i++)
        {
            for(int j=1;j<=len2;j++)
            {
                if(nums1[i-1]==nums2[j-1])
                    dp[i][j]=dp[i-1][j-1]+1;
                else
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
            }
        }
        return dp[len1][len2];
    }

五、代码优化

        我们发现,二维数组遍历需要花费大量时间,而且有些时间和空间的消耗是不必要的,那我们可以考虑用一维数组代替二维数组,通过定义的变量来代替原本另外一维数组的操作。

 public int maxUncrossedLines(int[] nums1, int[] nums2) {
       int len1=nums1.length;//设置nums1的长度
       int len2=nums2.length;//设置nums2的长度
       int[]dp=new int [len2+1];//dp数组代表nums2
       for(int i=1;i<=len1;i++)
       {
           int last=dp[0];//储存之前的dp
           for(int j=1;j<=len2;j++)
           {
               
               int tmp=dp[j];//储存当前的dp
               if(nums1[i-1]==nums2[j-1])
                    dp[j]=last+1;//不用dp[j-1]是因为它被覆盖了
                else
                    dp[j]=Math.max(dp[j-1],dp[j]);
                last=tmp;//重新赋值
           }
       }
       return dp[len2];
    }

 

六、题目描述(1049)

七、题目分析

         这题还是属于一个背包问题,可以其实就是将这个大数组转化为两个小数组,最优值就是当两个数组的差最小产生。那么这就和原来写过的一题很相似啦,我们先定义一个目标值target为整个大数组和的一半(如果是奇数就取sum/2)。那么dp[i][j]的含义就是stones前i个数中加起来不超过j的数的值,最后我们返回的就是dp[stones.length][target],表示前length个数中,最接近target的值,那么用sum-2*dp[stones.length][target]做返回值就可以得出答案啦(其中sum-dp[stones.length][target]是另一边的值)。

        那么它的状态转移方程怎么列呢?还是跟之前一样的很简单的套路,首先判断j和stones[i-1]的大小关系,如果j大,呢么这个第i个数可放可不放,取最大值即可,如果j小,那么stones[i-1]肯定不能放,因为一放的话,就超了。所以状态转移方程为:

if(j>=stones[i-1])
    dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-stones[i-1]]+stones[i-1]);
else
    dp[i][j]=dp[i-1][j];

八、代码

        

    public int lastStoneWeightII(int[] stones) {
        int sum=0;
        for(int i=0;i<stones.length;i++)
        {
            sum+=stones[i];
        }      
        int target=sum/2;
        int dp[][]=new int [stones.length+1][target+1];
        for(int i=1;i<=stones.length;i++)
        {
            for(int j=1;j<=target;j++)
            {
                if(j>=stones[i-1])
                    dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-stones[i-1]]+stones[i-1]);
                else
                    dp[i][j]=dp[i-1][j];
            }
        }
        return (sum - dp[stones.length][target]) - dp[stones.length][target];
    }

九、感言

        动态规划也写了有几天了,发现确实或多或少都是那些套路,只看个人怎么给它转化成容易理解的形式罢了。这几天下来,简单的题目都可以轻松搞定,中等的题目也能大差不差的写完,但是我还没有尝试较困难的题目,明天开始可以试试。动态规划的题目我看了一下有三十多题,我自然没时间全都写一遍,所以我决定再写两天的难题目就换到下个模块了,这个动态规划的版块如果以后有机会还会再写的。

        最后,flag不倒,每日一题!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少๑渊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值