一、题目分析
二、题目分析
这道题是很常规的回溯题,主要思路大概就是在主函数中,只要不为0的部分就都尝试一遍。
在处理函数中,首先如果当前所在点周围没有可以访问的点了,就直接返回当前的黄金值,否则就依次遍历上下左右,找出最大的,这里有关回溯的点是:因为吗,每个点只能访问一次,所以在访问上下左右的时候,要先将当前点置0(节省isvisit空间),遍历之后在取消置零即可。
这道题需要注意的点就是在写边界条件时看仔细,否则当你需要的点在边界处时,就可能出现计算错误的情况。
三、代码
class Solution {
public int getMaximumGold(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int ans = 0;
for(int i=0;i<m;i++)
for(int j=0;j<n;j++){
if(grid[i][j]!=0)
ans = Math.max(ans,process(grid,0,i,j));
}
return ans;
}
public static int process(int[][]grid,int cnt,int i,int j){
if(
((i-1>=0&&grid[i-1][j]==0)||i-1<0)
&&((j-1>=0&&grid[i][j-1]==0)||j-1<0)
&&((i+1<grid.length&&grid[i+1][j]==0)||i+1>=grid.length)
&&((j+1<grid[0].length&&grid[i][j+1]==0)||j+1>=grid[0].length)
)
return (cnt+grid[i][j]);
int [][]dir = {{0,1},{0,-1},{1,0},{-1,0}};
int ans = 0;
for(int[]cur:dir){
int newi = i+cur[0];
int newj = j+cur[1];
if(newi>=0&&newi<grid.length&&newj>=0&&newj<grid[0].length&&grid[newi][newj]!=0){
int tmp = grid[i][j];
cnt+=tmp;
grid[i][j] = 0;
ans = Math.max(ans,process(grid,cnt,newi,newj));
grid[i][j] = tmp;
cnt-=tmp;
}
}
return ans;
}
}
代码可以优化的地方在于:我使用函数返回值返回结果,但是这样的问题在于我必须要精准的判断什么时候可以返回,所以我花了大量语句描述返回的情况,很费时费力,可以用全局变量代替,函数类型就void即可,这样起码可以省些代码量。